Технологии бд теоретические основы организации бд. Реляционная модель данны



страница3/20
Дата23.04.2016
Размер2.56 Mb.
1   2   3   4   5   6   7   8   9   ...   20

1.2.Введение в реляционную модель данных

1.2.1.Основные понятия реляционной модели данных


Выделим следующие основные понятия реляционных баз данных: тип данных, домен, атрибут, кортеж, отношение, первичный ключ.

Для начала покажем смысл этих понятий на примере отношения СЛУЖАЩИЕ, содержащего информацию о служащих некоторого предприятия (Рис. 3).


Рис. 3 Соотношение основных понятий реляционного подхода


1.2.1.1.Тип данных


Значения данных, хранимые в реляционной базе данных, являются типизированными, т. е. известен тип каждого хранимого значения. Понятие типа данных в реляционной модели данных полностью соответствует понятию типа данных в языках программирования. Напомним, что традиционное (нестрогое) определение типа данных состоит из трех основных компонентов: определение множества значений данного типа; определение набора операций, применимых к значениям типа; определение способа внешнего представления значений типа (литералов).

Обычно в современных реляционных базах данных допускается хранение символьных, числовых данных (точных и приблизительных), специализированных числовых данных (таких, как «деньги»), а также специальных «темпоральных» данных (дата, время, временной интервал). Активно развивается подход к внедрению в реляционные системы возможностей определения пользователями собственных типов данных.

В примере на Рис. 3 мы имеем дело с данными трех типов: строки символов, целые числа и «деньги».

1.2.1.2.Домен


Понятие домена более специфично для баз данных, хотя и имеются аналогии с подтипами в некоторых языках программирования. В общем виде домен определяется путем задания некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу этого типа данных (ограничения домена).

Элемент данных является элементом домена в том и только в том случае, если вычисление этого логического выражения дает результат истина (для логических значений мы будем попеременно использовать обозначения истина и ложь или true и false). С каждым доменом связывается имя, уникальное среди имен всех доменов соответствующей базы данных.

Наиболее правильной интуитивной трактовкой понятия домена является его восприятие как допустимого потенциального, ограниченного подмножества значений данного типа. Например, домен ИМЕНА в нашем примере определен на базовом типе символьных строк, но в число его значений могут входить только те строки, которые могут представлять имена (в частности, для возможности представления русских имен такие строки не могут начинаться с мягкого или твердого знака и не могут быть длиннее, например, 20 символов). Если некоторый атрибут отношения определяется на некотором домене (как, например, на Рис. 3 атрибут СЛУ_ИМЯ определяется на домене ИМЕНА), то в дальнейшем ограничение домена играет роль ограничения целостности, накладываемого на значения этого атрибута.

Следует отметить также семантическую нагрузку понятия домена: данные считаются сравнимыми только в том случае, когда они относятся к одному домену. В нашем примере значения доменов НОМЕРА ПРОПУСКОВ и НОМЕРА ОТДЕЛОВ относятся к типу целых чисел, но не являются сравнимыми (допускать их сравнение было бы бессмысленно).


1.2.1.3.Заголовок отношения, кортеж, тело отношения, значение отношения, переменная отношения


Понятие отношения является наиболее фундаментальным в реляционном подходе к организации баз данных, поскольку n-арное отношение является единственной родовой структурой данных, хранящихся в реляционной базе данных. Это отражено и в общем названии подхода – термин реляционный (relational) происходит от relation (отношение). Однако сам термин отношение является исключительно неточным, поскольку, говоря про любые сохраняемые данные, мы должны иметь в виду тип этих данных, значения этого типа и переменные, в которых сохраняются значения. Соответственно, для уточнения термина отношение выделяются понятия заголовка отношения, значения отношения и переменной отношения. Кроме того, нам потребуется вспомогательное понятие кортежа.

Итак, заголовком (или схемой) отношения r (Hr) называется конечное множество упорядоченных пар вида , где A называется именем атрибута, а T обозначает имя некоторого базового типа или ранее определенного домена. По определению требуется, чтобы все имена атрибутов в заголовке отношения были различны. В примере на Рис. 3 заголовком отношения СЛУЖАЩИЕ является множество пар {<слу_номер, номера_пропусков>, <слу_имя, имена>, <слу_зарп, размеры_выплат>, <слу_отд_номер, номера_отделов>}.

Если все атрибуты заголовка отношения определены на разных доменах, то, чтобы не плодить лишних имен, разумно использовать для именования атрибутов имена соответствующих доменов (не забывая, конечно, о том, что это всего лишь удобный способ именования, который не устраняет различия между понятиями домена и атрибута).

Кортежем tr, соответствующим заголовку Hr, называется множество упорядоченных триплетов вида , по одному такому триплету для каждого атрибута в Hr. Третий элемент – v – триплета должен являться допустимым значением типа данных или домена T. Заголовку отношения СЛУЖАЩИЕ соответствуют, например, следующие кортежи: {<слу_номер, номера_пропусков, 2934>, <слу_имя, имена, Иванов>, <слу_зарп, размеры_выплат, 22.000>, <слу_отд_номер, номера_отделов, 310>}, {<слу_номер, номера_пропусков, 2940>, <слу_имя, имена, Кузнецов>, <слу_зарп, размеры_выплат, 35.000>, <слу_отд_номер, номера_отделов, 320>}.Телом Br отношения r называется произвольное множество кортежей tr. Одно из возможных тел отношения СЛУЖАЩИЕ показано на Рис. 3. Заметим, что в общем случае, как это демонстрируют, в частности, Рис. 3 и пример предыдущего абзаца, могут существовать такие кортежи tr, которые соответствуют Hr, но не входят в Br.

Значением Vr отношения r называется пара множеств Hr и Br. Одно из допустимых значений отношения СЛУЖАЩИЕ показано на рис. 2.1.

В изменчивой реляционной базе данных хранятся отношения, значения которых изменяются во времени. Переменной VARr называется именованный контейнер, который может содержать любое допустимое значение Vr. Естественно, что при определении любой VARr требуется указывать соответствующий заголовок отношения Hr.

Здесь стоит подчеркнуть, что любая принятая на практике операция обновления базы данных – INSERT (вставка кортежа в переменную отношения), DELETE (удаление кортежа из значения-отношения переменой отношения) и UPDATE (модификация кортежа значения-отношения переменной отношения) – с модельной точки зрения является операцией присваивания переменной отношения некоторого нового значения-отношения. Это совсем не означает, что перечисленные операции должны выполняться именно таким образом в СУБД: главное, чтобы результат операций соответствовал этой модельной семантике.

Заметим, что в дальнейшем в тех случаях, когда точный смысл термина понятен из контекста, мы будем использовать термин отношение как в смысле значение отношения, так и в смысле переменная отношения.

По определению, степенью, или «арностью», заголовка отношения, кортежа, соответствующего этому заголовку, тела отношения, значения отношения и переменной отношения является мощность заголовка отношения. Например, степень отношения СЛУЖАЩИЕ равна четырем, т. е. оно является 4-арным (кватернарным).

При приведенных определениях разумно считать схемой реляционной базы данных набор пар <имя_VARr, Hr>, включающий имена и заголовки всех переменных отношения, которые определены в базе данных.



Реляционная база данных – это набор пар (конечно, каждая переменная отношения в любой момент времени содержит некоторое значение-отношение, в частности, пустое).

Заметим, что в классических реляционных базах данных после определения схемы базы данных могли изменяться только значения переменных отношений. Однако теперь в большинстве реализаций допускается и изменение схемы базы данных: определение новых и изменение заголовков существующих переменных отношений. Это принято называть эволюцией схемы базы данных.


1.2.1.4.Первичный ключ и интуитивная интерпретация реляционных понятий


По определению, первичным ключом переменной отношения является такое подмножество S множества атрибутов ее заголовка, что в любое время значение первичного ключа (составное, если в состав первичного ключа входит более одного атрибута) в любом кортеже тела отношения отличается от значения первичного ключа в любом другом кортеже тела этого отношения, а никакое собственное подмножество S этим свойством не обладает.

Обычным житейским представлением отношения является таблица, заголовком которой является схема отношения, а строками – кортежи отношения-экземпляра; в этом случае имена атрибутов соответствуют именам столбцов данной таблицы. Поэтому иногда говорят про «столбцы таблицы», имея в виду «атрибуты отношения».

Конечно, это достаточно грубая терминология, поскольку у обычных таблиц и строки, и столбцы упорядочены, тогда как атрибуты и кортежи отношений являются элементами неупорядоченных множеств. Тем не менее, когда мы перейдем к рассмотрению практических вопросов организации реляционных баз данных и средств управления, то будем использовать эту «житейскую» терминологию. Подобной терминологии придерживаются в большинстве коммерческих реляционных СУБД. Иногда также используются термины файл как аналог таблицы, запись как аналог строки и поле как аналог столбца.

1.2.2.Фундаментальные свойства отношений


Остановимся теперь на некоторых важных свойствах отношений, которые следуют из приведенных ранее определений.

1.2.2.1.Отсутствие кортежей-дубликатов, первичный и возможные ключи отношений


То свойство, что тело любого отношения никогда не содержит кортежей-дубликатов, следует из определения тела отношения как множества кортежей. В классической теории множеств по определению любое множество состоит из различных элементов.

Именно из этого свойства вытекает наличие у каждого значения отношения первичного ключа – минимального множества атрибутов, являющегося подмножеством заголовка данного отношения, составное значение которых уникально определяет кортеж отношения.

Действительно, поскольку в любое время все кортежи тела любого отношения различны, у любого значения отношения свойством уникальности обладает, по крайней мере, полный набор его атрибутов. Однако в формальном определении первичного ключа требуется обеспечение его «минимальности», т. е. в набор атрибутов первичного ключа не должны входить такие атрибуты, которые можно отбросить без ущерба для основного свойства – однозначного определения кортежа. Немного позже мы покажем, почему свойство минимальности первичного ключа является критически важным. Понятно, что если у любого отношения существует набор атрибутов, обладающий свойством уникальности, то существует и минимальный набор атрибутов, обладающий свойством уникальности.

Конечно, могут существовать значения отношения с несколькими несовпадающими минимальными наборами атрибутов, обладающими свойствами уникальности. Например, если сделать предположение об уникальности значений атрибутов СЛУ_НОМЕР и СЛУ_ИМЯ отношения СЛУЖАЩИЕ, то для каждого значения этого отношения мы имеем два множества атрибутов, претендующих на звание первичного ключа – {СЛУ_НОМЕР} и {СЛУ_ИМЯ}. В этом случае проектировщик базы данных должен решить, какое из альтернативных множеств атрибутов назвать первичным ключом, а остальные минимальные наборы атрибутов, обладающие свойством уникальности, называются возможными ключами.

Понятие первичного ключа является исключительно важным в связи с понятием целостности баз данных. Заметим, что хотя формально существование первичного ключа значения отношения является следствием того, что тело отношения – это множество, на практике первичные (и возможные) ключи переменных отношений появляются в результате явных указаний проектировщика отношения. Определяя переменную отношения, проектировщик моделирует часть предметной области, данные из которой будет содержать база данных. И конечно, проектировщик должен знать природу этих данных. Например, ему должно быть известно, что никакие два служащих ни в какой момент времени не могут иметь удостоверение с одним и тем же номером. Поэтому он может (и даже должен, как будет показано немного позже) явно объявить {СЛУ_НОМЕР} возможным ключом. Если на предприятии установлено, что у всех сотрудников должны быть разные полные имена, то проектировщик может (и опять же должен) объявить возможным ключом и {СЛУ_ИМЯ}. Затем проектировщик должен оценить, какой из возможных ключей является более надежным (свойство его уникальности никогда не будет отменено) и выбрать наиболее надежный возможный ключ в качестве первичного (в нашем случае естественным выбором был бы ключ {СЛУ_НОМЕР}, потому что решение об уникальности полных имен сотрудников выглядит искусственным и может быть легко отменено руководством предприятия).

Теперь поясним, почему проектировщику следует явно объявлять первичный и возможные ключи переменных отношений). Дело в том, что в результате этого объявления СУБД получает информацию, которая в дальнейшем будет использоваться как ограничения целостности. СУБД никогда не допустит появления в переменной отношения значения-отношения, содержащего два кортежа с одинаковым значением атрибута СЛУ_НОМЕР (определение первичного ключа для данной переменной отношения отменить нельзя). Появление двух кортежей с одинаковым значением атрибута СЛУ_ИМЯ будет также невозможно до тех пор, пока остается в силе определение {СЛУ_ИМЯ} как возможного ключа. Тем самым объявления первичного и возможных ключей дают СУБД возможность поддерживать целостность базы данных даже в случае попыток занесения в нее некорректных данных.

Наконец, вернемся к свойству минимальности первичного и возможных ключей. Как отмечалось выше, это свойство является критически важным, и важность проявляется именно при трактовке первичного и возможных ключей как ограничений целостности. В нашем примере с отношением СЛУЖАЩИЕ свойством уникальности будет обладать не только множество атрибутов {СЛУ_НОМЕР}, но и, например, множество {СЛУ_НОМЕР, СЛУ_ОТД_НОМЕР}. Но если бы мы выставили в качестве ограничения целостности требование уникальности {СЛУ_НОМЕР, СЛУ_ОТД_НОМЕР}, то СУБД гарантировала бы отсутствие кортежей с одинаковым значением атрибута СЛУ_НОМЕР не во всем значении отношения СЛУЖАЩИЕ, а только в группах кортежей с одним и тем же значением атрибута СЛУ_ОТД_НОМЕР. Понятно, что это не соответствует смыслу моделируемой предметной области.

Забегая вперед, заметим, что во многих практических реализациях реляционных СУБД допускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но часто приводит к серьезным проблемам. Мы остановимся на этом подробнее при обсуждении языка SQL.


1.2.2.2.Отсутствие упорядоченности кортежей


Конечно, формально свойство отсутствия упорядоченности кортежей в значении отношения также является следствием определения тела отношения как множества кортежей. Однако на это свойство можно взглянуть и с другой стороны. Да, то обстоятельство, что тело отношения является множеством кортежей, облегчает построение полного механизма реляционной модели данных, включая базовые средства манипулирования данными – реляционные алгебру и исчисление. Но основная причина не в этом.

Достаточно часто у пользователей реляционных СУБД и разработчиков информационных систем вызывает раздражение тот факт, что они не могут хранить кортежи отношений на физическом уровне в нужном им порядке. И ссылки на требования реляционной теории здесь не очень уместны. Можно было бы разработать другую теорию, в которой допускались бы упорядоченные «отношения». Однако хранить упорядоченные списки кортежей в условиях интенсивно обновляемой базы данных гораздо сложнее технически, а поддержка упорядоченности влечет за собой существенные накладные расходы.

Отсутствие требования к поддержанию порядка на множестве кортежей отношения придает СУБД дополнительную гибкость при хранении баз данных во внешней памяти и при выполнении запросов к базе данных. Это не противоречит тому, что при формулировании запроса к БД, например, на языке SQL можно потребовать сортировки результирующей таблицы в соответствии со значениями некоторых столбцов. Такой результат, вообще говоря, является не отношением, а некоторым упорядоченным списком кортежей, и он может быть только окончательным результатом, к которому уже нельзя адресовать запросы.

1.2.2.3.Отсутствие упорядоченности атрибутов


Атрибуты отношений не упорядочены, поскольку по определению заголовок отношения есть множество пар <имя атрибута, имя домена>. Для ссылки на значение атрибута в кортеже отношения всегда используется имя атрибута. Легко заметить явную аналогию между заголовками отношений и структурными типами в языках программирования. Даже в языке программирования C с его практически неограниченными возможностями работы с указателями настойчиво рекомендуется обращаться к полям структур только по их именам. Если, например, на языке C определена структурная переменная

STRUCT {integer a; char b; integer c} d;

то в стандарте языка решительно не рекомендуется использовать для доступа к символьному полю b конструкцию *(&d + sizeof(integer)) (взять адрес структурной переменной d, прибавить к нему число байтов в целом числе и взять значение байта по полученному адресу). Это объясняется тем, что при реальном расположении в памяти полей такой структурной переменной в том порядке, как они определены, во многих компьютерах потребуется выровнять поле c по байту с четным адресом. Поэтому один байт просто пропадет. При расположении структурной переменной в памяти экономный компилятор (вернее, оптимизатор) переставит местами поля b и c, и указанная выше конструкция не обеспечит доступа к полю b. Для корректного обращения к полю b переменной d нужно использовать конструкции d.b или &d->b, т. е. явно указывать имя поля.

Аналогичными практическими соображениями оправдывается и отсутствие упорядоченности атрибутов в заголовке отношения. В этом случае СУБД сама принимает решение о том, в каком физическом порядке следует хранить значения атрибутов кортежей (хотя обычно один и тот же физический порядок поддерживается для всех кортежей каждого отношения). Кроме того, это свойство облегчает выполнение операции модификации схем существующих отношений не только путем добавления новых атрибутов, но и путем удаления существующих.

Снова забегая вперед, заметим, что в языке SQL в некоторых случаях допускается индексное указание атрибутов, причем в качестве неявного порядка атрибутов используется их порядок в линейной форме определения схемы отношения (это одна из осуждаемых особенностей языка SQL).

1.2.2.4.Атомарность значений атрибутов, первая нормальная форма отношения


Значения всех атрибутов являются атомарными (вернее, скалярными). Это следует из определения домена как потенциального множества значений скалярного типа данных, т. е. среди значений домена не могут содержаться значения с видимой структурой, в том числе множества значений (отношения). Заметим, что это не противоречит тому, что говорилось в разделе «Основные понятия реляционных баз данных» о потенциальной возможности использования при спецификации атрибутов типов данных, определяемых пользователями. Например, можно было бы добавить в схему отношения СЛУЖАЩИЕ атрибут СЛУ_ФОТО, определенный на домене (или типе данных) ФОТОГРАФИИ. Главное в атомарности значений атрибутов состоит в том, что реляционная СУБД не должна обеспечивать пользователям явной видимости внутренней структуры значения. Со всеми значениями можно обращаться только с помощью операций, определенных в соответствующем типе данных.

Принято говорить, что в реляционных базах данных допускаются только нормализованные отношения, или отношения, представленные в первой нормальной форме.

Пример ненормализованного отношения показан на Рис. 4. Можно сказать, что здесь мы имеем бинарное отношение, в котором значениями атрибута ОТДЕЛЫ являются отношения. Заметим, что исходное отношение СЛУЖАЩИЕ является нормализованным вариантом отношения ОТДЕЛЫ-СЛУЖАЩИЕ. Нормализованный вариант показан на Рис. 5

Рис. 4 Ненормализованное отношение ОТДЕЛЫ-СЛУЖАЩИЕ



Рис. 5 Отношение СЛУЖАЩИЕ: нормализованный вариант отношения ОТДЕЛЫ-СЛУЖАЩИЕ

Нормализованные отношения составляют основу классического реляционного подхода к организации баз данных. Они обладают некоторыми ограничениями6) (не всякую информацию удобно представлять в виде плоских таблиц), но существенно упрощают манипулирование данными. Рассмотрим, например, два идентичных оператора занесения кортежа:


  • зачислить служащего Кузнецова (пропуск номер 3000, зарплата 25000.00) в отдел номер 320;

  • зачислить служащего Кузнецова (пропуск номер 3000, зарплата 25000.00) в отдел номер 310.

Если информация о сотрудниках представлена в виде отношения СЛУЖАЩИЕ, оба оператора будут выполняться одинаково (вставить кортеж в отношение СЛУЖАЩИЕ). Если же работать с ненормализованным отношением ОТДЕЛЫ-СЛУЖАЩИЕ, то первый оператор приведет к простой вставке кортежа, а второй – к добавлению кортежа в значение-отношение атрибута ОТДЕЛ кортежа с первичным ключом 310.

При работе с ненормализованными отношениями аналогичные затруднения возникают при выполнении операций удаления и модификации кортежей.


1.2.3.Реляционная модель данных


Когда в предыдущих разделах мы говорили об основных понятиях реляционных баз данных, мы не опирались на какую-либо конкретную реализацию. Эти рассуждения в равной степени относятся к любой системе, при построении которой использовался реляционный подход.

Другими словами, мы использовали понятия так называемой реляционной модели данных. Модель данных (в контексте области баз данных) описывает некий набор родовых понятий и признаков, которыми должны обладать все конкретные СУБД и управляемые ими базы данных, если они основываются на этой модели. Наличие модели данных позволяет сравнивать конкретные реализации, используя один общий язык.

Хотя понятие модели данных является общим, и можно говорить об иерархической, сетевой, семантической и других моделях данных, нужно отметить, что в области баз данных это понятие было введено Эдгаром Коддом применительно к реляционным системам и наиболее эффективно используется именно в данном контексте. Попытки прямолинейного применения аналогичных моделей к дореляционным организациям показывают, что реляционная модель слишком «велика», а для постреляционных организаций она оказывается «мала».

1.2.3.1.Общая характеристика


Хотя понятие реляционной модели данных первым ввел основоположник реляционного подхода Эдгар Кодд, наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит известному популяризатору идей Кодда Кристоферу Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах (см., например, К. Дейт. Введение в системы баз данных. 6-е изд., М.; СПб.: Вильямс.– 2000). Согласно трактовке Дейта, реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной родовой структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение. Определяются понятия доменов, атрибутов, кортежей, заголовка, тела и переменной отношения.

В манипуляционной части модели определяются два фундаментальных механизма манипулирования реляционными БД – реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями и добавлениями), а второй – на классическом логическом аппарате исчисления предикатов первого порядка. Основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.

1.2.3.2.Целостность реляционных данных


Во второй части реляционной модели данных определяются два ограничения, которые должны выполняться в любой реляционной базе данных. Это:

  • Целостность сущностей.

  • Целостность внешних ключей.

Прежде, чем говорить о целостности сущностей, опишем использование null-значений в реляционных базах данных.
Null-значения

Основное назначение баз данных состоит в том, чтобы хранить и предоставлять информацию о реальном мире. Для представления этой информации в базе данных используются привычные для программистов типы данных - строковые, численные, логические и т.п. Однако в реальном мире часто встречается ситуация, когда данные неизвестны или не полны. Например, место жительства или дата рождения человека могут быть неизвестны (база данных разыскиваемых преступников). Если вместо неизвестного адреса уместно было бы вводить пустую строку, то что вводить вместо неизвестной даты? Ответ - пустую дату - не вполне удовлетворителен, т.к. простейший запрос "выдать список людей в порядке возрастания дат рождения" даст заведомо неправильных ответ.

Для того чтобы обойти проблему неполных или неизвестных данных, в базах данных могут использоваться типы данных, пополненные так называемым null-значением. Null-значение - это, собственно, не значение, а некий маркер, показывающий, что значение неизвестно.

Таким образом, в ситуации, когда возможно появление неизвестных или неполных данных, разработчик имеет на выбор два варианта.

Первый вариант состоит в том, чтобы ограничиться использованием обычных типов данных и не использовать null-значения, а вместо неизвестных данных вводить либо нулевые значения, либо значения специального вида - например, договориться, что строка "АДРЕС НЕИЗВЕСТЕН" и есть те данные, которые нужно вводить вместо неизвестного адреса. В любом случае на пользователя (или на разработчика) ложится ответственность на правильную трактовку таких данных. В частности, может потребоваться написание специального программного кода, который в нужных случаях "вылавливал" бы такие данные. Проблемы, возникающие при этом очевидны - не все данные становятся равноправны, требуется дополнительный программный код, "отслеживающий" эту неравноправность, в результате чего усложняется разработка и сопровождение приложений.

Второй вариант состоит в использовании null-значений вместо неизвестных данных. За кажущейся естественностью такого подхода скрываются менее очевидные и более глубокие проблемы. Наиболее бросающейся в глаза проблемой является необходимость использования трехзначной логики при оперировании с данными, которые могут содержать null-значения. В этом случае при неаккуратном формулировании запросов, даже самые естественные запросы могут давать неправильные ответы. Есть более фундаментальные проблемы, связанные с теоретическим обоснованием корректности введения null-значений, например, непонятно вообще, входят ли null-значения в домены или нет.

Подробное обсуждение проблем использования null-значений выходит за пределы данной работы. Можно только сказать о том, что этот вопрос в теории реляционных баз данных окончательно не решен. Основоположник реляционного подхода Кодд считал null-значения неотъемлемой частью реляционной модели. К.Дейт, один из крупнейших теоретиков реляционной модели выступает категорически против null-значений.

Практически все реализации современных реляционных СУБД позволяют использовать null-значения, несмотря на их недостаточную теоретическую обоснованность. Такую ситуацию можно сравнить с ситуацией, сложившейся в начале века с теорией множеств. Почти сразу после создания Кантором теории множеств, в ней были обнаружены внутренние противоречия (антиномии). Были разработаны более строгие теории, позволяющие избежать этих противоречий (конструктивная теория множеств). Однако в реальной работе большинство математиков пользуется классической теорией множеств, т.к. более строгие теории более ограничены и негибки в применении именно в силу своей большей строгости.



Трехзначная логика (3VL)

Т.к. null-значение обозначает на самом деле тот факт, что значение неизвестно, то любые алгебраические операции (сложение, умножение, конкатенация строк и т.д.) должны давать также неизвестное значение, т.е. null. Действительно, если, например, вес детали неизвестен, то неизвестно также, сколько весят 10 таких деталей.

При сравнении выражений, содержащих null-значения, результат также может быть неизвестен, например, значение истинности для выражения есть null, если один или оба аргумента есть null. Таким образом, определение истинности логических выражений базируется на трехзначной логике (three-valued logic, 3VL), в которой кроме значений T - ИСТИНА и F - ЛОЖЬ, введено значение U - НЕИЗВЕСТНО. Логическое значение U - это то же самое, что и null-значение. Трехзначная логика базируется на следующих таблицах истинности:

Таблица 1. Таблица истинности AND


AND

F

T

U

F

F

F

F

T

F

T

U

U

F

U

U



Таблица 2. Таблица истинности OR

OR

F

T

U

F

F

T

U

T

T

T

T

U

U

T

U



Таблица 3. Таблица истинности NOT

NOT




F

T

T

F

U

U

Имеется несколько парадоксальных следствий применения трехзначной логики.



Парадокс 1.

Null-значение не равно самому себе. Действительно, выражение null = null дает значение не ИСТИНА, а НЕИЗВЕСТНО. Значит выражение не обязательно ИСТИНА!



Парадокс 2.

Неверно также, что null-значение не равно самому себе! Действительно, выражение nullnull также принимает значение не ИСТИНА, а НЕИЗВЕСТНО! Значит также, что и выражение тоже не обязательно ЛОЖЬ!


Парадокс 3.

не обязательно ИСТИНА. Значит, в трехзначной логике не работает принцип исключенного третьего (любое высказывание либо истинно, либо ложно).

Таких парадоксов можно построить сколько угодно. Конечно, это на самом деле не парадоксы, а просто следствия из аксиом трехзначной логики.


Потенциальные ключи

По определению, тело отношения есть множество кортежей, поэтому отношения не могут содержать одинаковые кортежи. Это значит, что каждый кортеж должен обладать свойством уникальности. На самом деле, свойством уникальности в пределах отношения могут обладать отдельные атрибуты кортежей или группы атрибутов. Такие уникальные атрибуты удобно использовать для идентификации кортежей.

Определение. Пусть дано отношение R. Подмножество атрибутов K отношения R будем называть потенциальным ключом, если К обладает следующими свойствами:

  • Свойством уникальности - в отношении не может быть двух различных кортежей, с одинаковым значением К.

  • Свойством неизбыточности - никакое подмножество в К не обладает свойством уникальности.

Любое отношение имеет по крайней мере один потенциальный ключ. Действительно, если никакой атрибут или группа атрибутов не являются потенциальным ключом, то, в силу уникальности кортежей, все атрибуты вместе образуют потенциальный ключ.

Потенциальный ключ, состоящий из одного атрибута, называется простым. Потенциальный ключ, состоящий из нескольких атрибутов, называется составным.

Отношение может иметь несколько потенциальных ключей. Традиционно, один из потенциальных ключей объявляется первичным, а остальные - альтернативными. Различия между первичным и альтернативными ключами могут быть важны в конкретной реализации реляционной СУБД, но с точки зрения реляционной модели данных, нет оснований выделять таким образом один из потенциальных ключей.

Замечание. Понятие потенциального ключа является семантическим понятием и отражает некоторый смысл (трактовку) понятий из конкретной предметной области. Для того чтобы проиллюстрировать этот факт рассмотрим следующее отношение "Сотрудники":

Таблица 4. Отношение "Сотрудники"

Табельный номер

Фамилия

Зарплата

1

Иванов

1000

2

Петров

2000

3

Сидоров

3000

При первом взгляде на таблицу, изображающую это отношение, может показаться, что в таблице имеется три потенциальных ключа - в каждой колонке таблицы содержатся уникальные данные. Однако среди сотрудников могут быть однофамильцы и сотрудники с одинаковой зарплатой. Табельный же номер по сути свой уникален для каждого сотрудника. Какие же соображения привели нас к пониманию того, что в данном отношении только один потенциальный ключ - "Табельный номер"? Именно понимание смысла данных, содержащихся в отношении.

Попробуем представить это отношение в другом виде, изменив наименования атрибутов:



Таблица 5.

A

B

C

1

Иванов

1000

2

Петров

2000

3

Сидоров

3000

Предъявим кому-нибудь эту таблицу и не сообщим смысл наименований атрибутов. Очевидно, что невозможно судить, не понимая смысла данных, может или не может в этом отношении появиться, например, кортеж (1, Петров, 3000). Если бы, кстати, такой кортеж появился (что, на первый взгляд, вполне возможно, т.к. не нарушается уникальность кортежей), то мы точно смогли бы сказать, что не является альтернативным ключом - ни один из атрибутов по отдельности. Но мы не сможем сказать, что же является первичным ключом.



Замечание. Потенциальные ключи служат средством идентификации объектов предметной области, данные о которых хранятся в отношении. Объекты предметной области должны быть различимы.

Замечание. Потенциальные ключи служат единственным средством адресации на уровне кортежей в отношении. Точно указать какой-нибудь кортеж можно только зная значение его потенциального ключа.
Целостность сущностей

Т.к. потенциальные ключи фактически служат идентификаторами объектов предметной области (т.е. предназначены для различения объектов), то значения этих идентификаторов не могут содержать неизвестные значения. Действительно, если бы идентификаторы могли содержать null-значения, то мы не могли бы дать ответ "да" или "нет" на вопрос, совпадают или нет два идентификатора.

Это определяет следующее правило целостности сущностей:



Правило целостности сущностей. Атрибуты, входящие в состав некоторого потенциального ключа не могут принимать null-значений.
Внешние ключи

Различные объекты предметной области, информация о которых хранится в базе данных, всегда взаимосвязаны друг с другом. Например, накладная на поставку товара содержит список товаров с количествами и ценами, сотрудник предприятия имеет детей, числится в подразделении и т.д. Термины "содержит", "имеет", "числится" отражают взаимосвязи между понятиями "накладная" и "список товаров", "сотрудник" и "дети", "сотрудник" и "подразделение". Такие взаимосвязи отражаются в реляционных базах данных при помощи внешних ключей, связывающих несколько отношений.

Рассмотрим пример с поставщиками и поставками деталей. Предположим, что нам требуется хранить информацию о наименовании поставщиков, наименовании и количестве поставляемых ими деталей, причем каждый поставщик может поставлять несколько деталей и каждая деталь может поставляться несколькими поставщиками. Можно предложить хранить данные в следующем отношении:



Таблица 6. Отношение "Поставщики и поставляемые детали"

Номер поставщика

Наименование поставщика

Номер детали

Наименование детали

Поставляемое количество

1

Иванов

1

Болт

100

1

Иванов

2

Гайка

200

1

Иванов

3

Винт

300

2

Петров

1

Болт

150

2

Петров

2

Гайка

250

3

Сидоров

3

Винт

1000

Потенциальным ключом этого отношения может выступать пара атрибутов {"Номер поставщика", "Номер детали"} - в таблице они выделены курсивом.

Приведенный способ хранения данных обладает рядом недостатков.

Что произойдет, если изменилось наименование поставщика? Т.к. наименование поставщика повторяется во многих кортежах отношения, то это наименование нужно одновременно изменить во всех кортежах, где оно встречается, иначе данные станут противоречивыми. То же самое с наименованиями деталей. Значит, данные хранятся в нашем отношении с большой избыточностью.

Далее, как отразить факт, что некоторый поставщик, например Петров, временно прекратил поставки деталей? Если мы удалим все кортежи, в которых хранится информация о поставках этого поставщика, то мы потеряем данные о самом Петрове как потенциальном поставщике. Выйти из этого положения, оставив в отношении кортеж типа (2, Петров, NULL, NULL, NULL) мы не можем, т.к. атрибут "Номер детали" входит в состав потенциального ключа и не может содержать null-значений. То же самое произойдет, если некоторая деталь временно не поставляется никаким поставщиком. Получается, что мы не можем хранить информацию о том, что есть некий поставщик, если он не поставляет хотя бы одну деталь, и не можем хранить информацию о том, что есть некоторая деталь, если она никем не поставляется.

Подобные проблемы возникают потому, что мы смешали в одном отношении различные объекты предметной области - и данные о поставщиках, и данные о деталях, и данные о поставках деталей. Говорят, что это отношение плохо нормализовано (просто нормализованным оно является хотя бы потому, что оно есть отношение и, следовательно, автоматически находится в 1НФ).

О том, как правильно нормализовать отношения, будет сказано в следующих главах, сейчас же предложим разнести данные по трем отношениям - "Поставщики", "Детали", "Поставки". Для нас важно выяснить, каким образом данные, хранящиеся в этих отношениях взаимосвязаны друг с другом. Эта связь определяется семантикой предметной области и описывается фразами: "Поставщики выполняют Поставки", "Детали поставляются через Поставки". Эти две взаимосвязи косвенно определяют новую взаимосвязь между "Поставщиками" и "Деталями": "Детали поставляются Поставщиками".

Эти фразы отражают различные типы взаимосвязей. Чтобы более точно отразить предметную область, можно иначе переформулировать фразы: "Один Поставщик может выполнять несколько Поставок", "Одна Деталь может поставляться несколькими Поставками". Это пример взаимосвязи типа "один-ко-многим".

Взаимосвязь между "Поставщиками" и "Деталями" можно переформулировать так: "Несколько Деталей может поставляться несколькими Поставщиками". Это пример взаимосвязи типа "много-ко-многим".

В реляционных базах данных основными являются взаимосвязи типа "один-ко-многим". Взаимосвязи типа "много-ко-многим" реализуются использованием нескольких взаимосвязей типа "один-ко-многим". Отношение, входящее в связь со стороны "один" (например, "Поставщики"), называют родительским отношением. Отношение, входящее в связь со стороны "много" (например, "Поставки"), называется дочернем отношением.

Механизм реализации взаимосвязи "один-ко-многим" состоит в том, что в дочернее отношение добавляются атрибуты, являющиеся ссылками на ключевые атрибуты родительского отношения. Эти атрибуты и являются внешними ключами, определяющими, с какими кортежами родительского отношения связаны кортежи дочернего отношения. Такие атрибуты еще называют мигрирующими из родительского отношения.



Таким образом, наш пример с поставщиками и поставляемыми деталями должен выглядеть следующим образом:

Таблица 7. Отношение "Поставщики"

Номер поставщика

Наименование поставщика

1

Иванов

2

Петров

3

Сидоров


Таблица 8. Отношение "Детали"

Номер детали

Наименование детали

1

Болт

2

Гайка

3

Винт


Таблица 9. Отношение "Поставки"

Номер поставщика

Номер детали

Поставляемое количество

1

1

100

1

2

200

1

3

300

2

1

150

2

2

250

3

3

1000

В отношении "Поставки" атрибуты "Номер поставщика" и "Номер детали" являются ссылками на ключевые атрибуты отношений "Поставщики" и "Детали", и, следовательно, являются внешними ключами. Заметим, что данные отношения свободны от недостатков, описанных выше, когда все данные предлагалось хранить в одном отношении. Действительно, при изменении наименования поставщика или детали, это изменение происходит только в одном месте. Если поставщик прекратил поставки всех деталей, то удаляются соответствующие кортежи в отношении "Поставки", данные же о самом поставщике остаются без изменений.

Дадим точное определение.



Определение. Пусть дано отношение R . Подмножество атрибутов FK отношения R будем называть внешним ключом, если:

  • Существует отношение S ( R и S не обязательно различны) с потенциальным ключом К.

  • Каждое значение FK в отношении R всегда совпадает со значением К для некоторого кортежа из S , либо является null-значением.

Отношение называется родительским отношением, отношение называется дочерним отношением.

Замечания:

  • Внешний ключ, также как и потенциальный, может быть простым и составным.

  • Внешний ключ должен быть определен на тех же доменах, что и соответствующий первичный ключ родительского отношения.

  • Внешний ключ, как правило, не обладает свойством уникальности. Так и должно быть, т.к. в дочернем отношении может быть несколько кортежей, ссылающихся на один и тот же кортеж родительского отношения. Это, собственно, и дает тип отношения "один-ко-многим".

  • Если внешний ключ все-таки обладает свойством уникальности, то связь между отношениями имеет тип "один-к-одному". Чаще всего такие отношения объединяются в одно отношение, хотя это и не обязательно.

  • Хотя каждое значение внешнего ключа обязано совпадать со значениями потенциального ключа в некотором кортеже родительского отношения, то обратное, вообще говоря, неверно. Например, могут существовать поставщики, не поставляющие никаких деталей.

  • Для внешнего ключа не требуется, чтобы он был компонентом некоторого потенциального ключа (как получилось в примере с поставщиками и деталями).

  • Null-значения для атрибутов внешнего ключа допустимы только в том случае, когда атрибуты внешнего ключа не входят в состав никакого потенциального ключа
Целостность внешних ключей

Т.к. внешние ключи фактически служат ссылками на кортежи в другом (или в том же самом) отношении, то эти ссылки не должны указывать на несуществующие объекты. Это определяет следующее правило целостности внешних ключей:

Правило целостности внешних ключей. Внешние ключи не должны быть несогласованными, т.е. для каждого значения внешнего ключа должно существовать соответствующее значение первичного ключа в родительском отношении.
Замечания к правилам целостности сущностей и внешних ключей

На самом деле приведенные правила целостности сущностей и внешних ключей прямо следуют из определений понятий "потенциальный ключ" и "внешний ключ".

Действительно, в определении потенциального ключа требуется, чтобы потенциальный ключ обладал свойством уникальности. Это фактически означает, что мы должны уметь различать значения потенциальных ключей, т.е. при сравнении двух значений потенциального ключа мы всегда должны получать значения либо ИСТИНА, либо ЛОЖЬ. Но любое сравнение, в которое входит null-значение, принимает значение U - НЕИЗВЕСТНО, откуда следует, что атрибуты потенциального ключа не могут содержать null-значений.

Для внешних ключей правило целостности фактически входит в определение.

Таким образом, с точки зрения реляционной теории, явная формулировка правил целостности является излишней – они автоматически вытекают из определений понятий ключа и внешнего ключа.

Тем не менее, явная формулировка правил целостности имеет определенный практический смысл. В большинстве серьезных СУБД за выполнением этих ограничений следит сама СУБД, если, конечно, пользователь явно объявил потенциальные и внешние ключи. Но, во-первых, для некоторых систем можно допустить, чтобы эти ограничения не выполнялись, а во-вторых, некоторые системы просто не поддерживают понятия целостности, например, некоторые "настольные" СУБД типа FoxPro. В этих случаях за целостностью данных должен следить сам пользователь, или программист, разрабатывающий приложение для пользователя.

Явная формулировка правил целостности помогает четко понять, какие опасности несет в себе пренебрежение этими правилами.


Операции, могущие нарушить ссылочную целостность

Ссылочная целостность может нарушиться в результате операций, изменяющих состояние базы данных. Таких операций три - вставка, обновление и удаление кортежей в отношениях. Т.к. в определении ссылочной целостности участвуют два отношения - родительское и дочернее, а в каждом из них возможны три операции - вставка, обновление, удаление, то нужно рассмотреть шесть различных вариантов.

Для родительского отношения

Вставка кортежа в родительском отношении. При вставке кортежа в родительское отношение возникает новое значение потенциального ключа. Т.к. допустимо существование кортежей в родительском отношении, на которые нет ссылок из дочернего отношения, то вставка кортежей в родительское отношение не нарушает ссылочной целостности.

Обновление кортежа в родительском отношении. При обновлении кортежа в родительском отношении может измениться значение потенциального ключа. Если есть кортежи в дочернем отношении, ссылающиеся на обновляемый кортеж, то значения их внешних ключей станут некорректными. Обновление кортежа в родительском отношении может привести к нарушению ссылочной целостности, если это обновление затрагивает значение потенциального ключа.

Удаление кортежа в родительском отношении. При удалении кортежа в родительском отношении удаляется значение потенциального ключа. Если есть кортежи в дочернем отношении, ссылающиеся на удаляемый кортеж, то значения их внешних ключей станут некорректными. Удаление кортежей в родительском отношении может привести к нарушению ссылочной целостности.

Для дочернего отношения

Вставка кортежа в дочернее отношение. Нельзя вставить кортеж в дочернее отношение, если вставляемое значение внешнего ключа некорректно. Вставка кортежа в дочернее отношение привести к нарушению ссылочной целостности.

Обновление кортежа в дочернем отношении. При обновлении кортежа в дочернем отношении можно попытаться некорректно изменить значение внешнего ключа. Обновление кортежа в дочернем отношении может привести к нарушению ссылочной целостности.

Удаление кортежа в дочернем отношении. При удалении кортежа в дочернем отношении ссылочная целостность не нарушается.

Таким образом, ссылочная целостность в принципе может быть нарушена при выполнении одной из четырех операций:


  • Обновление кортежа в родительском отношении.

  • Удаление кортежа в родительском отношении.

  • Вставка кортежа в дочернее отношение.

  • Обновление кортежа в дочернем отношении.
Стратегии поддержания ссылочной целостности

Существуют две основные стратегии поддержания ссылочной целостности:

RESTRICT (ОГРАНИЧИТЬ) – не разрешать выполнение операции, приводящей к нарушению ссылочной целостности. Это самая простая стратегия, требующая только проверки, имеются ли кортежи в дочернем отношении, связанные с некоторым кортежем в родительском отношении.

CASCADE (КАСКАДИРОВАТЬ) разрешить выполнение требуемой операции, но внести при этом необходимые поправки в других отношениях так, чтобы не допустить нарушения ссылочной целостности и сохранить все имеющиеся связи. Изменение начинается в родительском отношении и каскадно выполняется в дочернем отношении. В реализации этой стратегии имеется одна тонкость, заключающаяся в том, что дочернее отношение само может быть родительским для некоторого третьего отношения. При этом может дополнительно потребоваться выполнение какой-либо стратегии и для этой связи и т.д. Если при этом какая-либо из каскадных операций (любого уровня) не может быть выполнена, то необходимо отказаться от первоначальной операции и вернуть базу данных в исходное состояние. Это самая сложная стратегия, но она хороша тем, что при этом не нарушается связь между кортежами родительского и дочернего отношений.

Эти стратегии являются стандартными и присутствуют во всех СУБД, в которых имеется поддержка ссылочной целостности.

Можно рассмотреть дополнительные стратегии поддержания ссылочной целостности:

SET NULL (УСТАНОВИТЬ В NULL) – разрешить выполнение требуемой операции, но все возникающие некорректные значения внешних ключей изменять на null-значения. Эта стратегия имеет два недостатка. Во-первых, для нее требуется допустить использование null-значений. Во-вторых, кортежи дочернего отношения теряют всякую связь с кортежами родительского отношения. Установить, с каким кортежем родительского отношения были связаны измененные кортежи дочернего отношения, после выполнения операции уже нельзя.

SET DEFAULT (УСТАНОВИТЬ ПО УМОЛЧАНИЮ) разрешить выполнение требуемой операции, но все возникающие некорректные значения внешних ключей изменять на некоторое значение, принятое по умолчанию. Достоинство этой стратегии по сравнению с предыдущей в том, что она позволяет не пользоваться null-значеними. Недостатки заключаются в следующем. Во-первых, в родительском отношении должен быть некий кортеж, потенциальный ключ которого принят как значение по умолчанию для внешних ключей. В качестве такого "кортежа по умолчанию" обычно принимают специальный кортеж, заполненный нулевыми значениями (не null-значениями!). Этот кортеж нельзя удалять из родительского отношения, и в этом кортеже нельзя изменять значение потенциального ключа. Таким образом, не все кортежи родительского отношения становятся равнозначными, поэтому приходится прилагать дополнительные усилия для отслеживания этой неравнозначности. Это плата за отказ от использования null-значений. Во-вторых, как и в предыдущем случае, кортежи дочернего отношения теряют всякую связь с кортежами родительского отношения. Установить, с каким кортежем родительского отношения были связаны измененные кортежи дочернего отношения, после выполнения операции уже нельзя.

В некоторых реализация СУБД рассматривается еще одна стратегия поддержания ссылочной целостности:



IGNORE (ИГНОРИРОВАТЬ) – выполнять операции, не обращая внимания на нарушения ссылочной целостности.

Конечно, это не стратегия, а отказ от поддержки ссылочной целостности. В этом случае в дочернем отношении могут появляться некорректные значения внешних ключей, и вся ответственность за целостность базы данных ложится на пользователя.

В дополнение к приведенным стратегиям пользователь может придумать свою уникальную стратегию поддержания ссылочной целостности.

Применение стратегий поддержания ссылочной целостности

Рассмотрим, как применяются стратегии поддержания ссылочной целостности при выполнении операций модификации базы данных.



При обновлении кортежа в родительском отношении

Допустимые стратегии:



RESTRICT (ОГРАНИЧИТЬ) – не разрешать обновление, если имеется хотя бы один кортеж в дочернем отношении, ссылающийся на обновляемый кортеж.

CASCADE (КАСКАДИРОВАТЬ) – выполнить обновление и каскадно изменить значения внешних ключей во всех кортежах дочернего отношения, ссылающихся на обновляемый кортеж.

SET NULL (УСТАНОВИТЬ В NULL) – выполнить обновление и во всех кортежах дочернего отношения, ссылающихся на обновляемый кортеж, изменить значения внешних ключей на null-значение.

SET DEFAULT (УСТАНОВИТЬ ПО УМОЛЧАНИЮ) выполнить обновление и во всех кортежах дочернего отношения, ссылающихся на обновляемый кортеж, изменить значения внешних ключей на некоторое значение, принятое по умолчанию.

IGNORE (ИГНОРИРОВАТЬ) – выполнить обновление, не обращая внимания на нарушения ссылочной целостности.

При удалении кортежа в родительском отношении

Допустимые стратегии:



RESTRICT (ОГРАНИЧИТЬ) – не разрешать удаление, если имеется хотя бы один кортеж в дочернем отношении, ссылающийся на удаляемый кортеж.

CASCADE (КАСКАДИРОВАТЬ) – выполнить удаление и каскадно удалить кортежи в дочернем отношении, ссылающиеся на удаляемый кортеж.

SET NULL (УСТАНОВИТЬ В NULL) – выполнить удаление и во всех кортежах дочернего отношения, ссылающихся на удаляемый кортеж, изменить значения внешних ключей на null-значение.

SET DEFAULT (УСТАНОВИТЬ ПО УМОЛЧАНИЮ) – выполнить удаление и во всех кортежах дочернего отношения, ссылающихся на удаляемый кортеж, изменить значения внешних ключей на некоторое значение, принятое по умолчанию.

IGNORE (ИГНОРИРОВАТЬ) – выполнить удаление, не обращая внимания на нарушения ссылочной целостности.

При вставке кортежа в дочернее отношение

Допустимые стратегии:



RESTRICT (ОГРАНИЧИТЬ) – не разрешать вставку, если внешний ключ во вставляемом кортеже не соответствует ни одному значению потенциального ключа родительского отношения.

SET NULL (УСТАНОВИТЬ В NULL) – вставить кортеж, но в качестве значения внешнего ключа занести не предлагаемое пользователем некорректное значение, а null-значение.

SET DEFAULT (УСТАНОВИТЬ ПО УМОЛЧАНИЮ) – вставить кортеж, но в качестве значения внешнего ключа занести не предлагаемое пользователем некорректное значение, а некоторое значение, принятое по умолчанию.

IGNORE (ИГНОРИРОВАТЬ) – вставить кортеж, не обращая внимания на нарушения ссылочной целостности.
При обновлении кортежа в дочернем отношении

Допустимые стратегии:



RESTRICT (ОГРАНИЧИТЬ) – не разрешать обновление, если внешний ключ в обновляемом кортеже становится не соответствующим ни одному значению потенциального ключа родительского отношения.

SET NULL (УСТАНОВИТЬ В NULL) – обновить кортеж, но в качестве значения внешнего ключа занести не предлагаемое пользователем некорректное значение, а null-значение.

SET DEFAULT (УСТАНОВИТЬ ПО УМОЛЧАНИЮ) – обновить кортеж, но в качестве значения внешнего ключа занести не предлагаемое пользователем некорректное значение, а некоторое значение, принятое по умолчанию.

IGNORE (ИГНОРИРОВАТЬ) – обновить кортеж, не обращая внимания на нарушения ссылочной целостности.
1   2   3   4   5   6   7   8   9   ...   20


База данных защищена авторским правом ©bezogr.ru 2016
обратиться к администрации

    Главная страница