Курс общей астрономии



страница4/15
Дата07.05.2016
Размер3.1 Mb.
1   2   3   4   5   6   7   8   9   ...   15

(1.37)
Формулы (1.37) служат для вычисления зенитного расстояния z и азимута светила A (для любого момента звездного времени s и для любой широты j ) по известному склонению светила d и его часовому углу t = s – a . Иными словами, они служат для перехода от экваториальных координат светила к его горизонтальным координатам. Кроме того, формулы (1.36) и (1.37) используются при вычислении моментов времени восхода и захода светил и их азимутов в эти моменты, а также при решении двух очень важных задач практической астрономии – определения географической широты места наблюдения j и определения местного звездного времени s.

Для перехода от экваториальных координат светила (a и d ) к его эклиптическим координатам (l и b ) и наоборот можно вывести формулы, аналогичные формулам

(1.36) и (1.37). Только в этом случае надо основные формулы § 28 применить к сферическому треугольнику небесной сферы, вершинами которого являются полюс мира Р, полюс эклиптики П и светило М, а стороны и углы имеют значения, указанные на рис. 18.

§ 30. Рефракция

Видимое положение светила над горизонтом, строго говоря, отличается от вычисленного по формуле (1.37). Дело в том, что лучи света от небесного тела, прежде чем попасть в глаз наблюдателя, проходят сквозь атмосферу Земли и преломляются в ней, а так как плотность атмосферы увеличивается к поверхности Земли, то луч света (рис. 19) все более и более отклоняется в одну и ту же сторону по кривой линии, так что направление ОМ1 , по которому наблюдатель О видит светило, оказывается отклоненным в сторону зенита и не совпадающим с направлением ОМ2 (параллельным ВМ), по которому он видел бы светило при отсутствии атмосферы.

Явление преломления световых лучей при прохождении ими земной атмосферы называется астрономической рефракцией. Угол M1OM2 называется углом рефракции или рефракцией r . Угол ZOM1 называется видимым зенитным расстоянием светила z', а угол ZOM2 – истинным зенитным расстоянием z. Непосредственно из рис. 19 следует z – z' = r или z = z' + r , т.е. истинное зенитное расстояние светила больше видимого на величину рефракции r . Рефракция как бы приподнимает светило над горизонтом. По законам преломления света луч падающий и луч преломленный лежат в одной плоскости. Следовательно, траектория луча МВО и направления ОМ2 и OM1 лежат в одной вертикальной плоскости. Поэтому рефракция не изменяет азимута светила, и, кроме того, равна нулю, если светило находится в зените. Если светило находится в кульминации, то рефракция изменяет только его склонение и на ту же величину, что и зенитное расстояние, так как в этом случае плоскости его часового и вертикального кругов совпадают. В остальных случаях, когда эти плоскости пересекаются под некоторым углом, рефракция изменяет и склонение, и прямое восхождение светила. Точная теория рефракции очень сложна и рассматривается в специальных курсах. Рефракция зависит не только от высоты светила над горизонтом, но и от состояния атмосферы, главным образом от ее плотности, которая сама является функцией, в основном температуры и давления. При давлении В мм. рт. ст. и температуре t° С приближенное значение рефракции (1.38)

Следовательно, при температуре 0° С и при давлении 760 мм рефракция r = 60”,25 tg z'.(1.39)

По формулам (1.38) и (1.39) рефракция вычисляется в тех случаях, когда видимое зенитное расстояние z'

70° формулы (1.38) и (1.39) дают ошибку больше 1», увеличивающуюся при дальнейшем приближении к горизонту до бесконечности, тогда как действительная величина рефракции в горизонте составляет около 35'. Поэтому для зенитных расстояний z'> 70° рефракция определяется путем сочетания теории со специальными наблюдениями. Вследствие рефракции наблюдается изменение формы дисков Солнца и Луны при их восходе или заходе. Рефракция нижних краев дисков этих светил у горизонта почти на 6' больше рефракции верхних краев, а так как горизонтальные диаметры рефракцией не изменяются, то видимые диски Солнца и Луны принимают овальную форму.

§ 31. Суточный параллакс

Координаты небесных тел, определенные из наблюдений на поверхности Земли, называются топоцентрическими. Топоцентрические координаты одного и того же светила в один и тот же момент, вообще говоря, различны для различных точек на поверхности Земли. Различие это заметно лишь для тел Солнечной системы и практически не ощутимо для звезд (меньше 0»,00004). Из множества направлений, по которым светило видно из разных точек Земли, основным считается направление из центра Земли. Оно дает геоцентрическое положение светила и определяет его геоцентрические координаты. Угол между направлениями, по которым светило М' было бы видно из центра Земли и из какой-нибудь точки на ее поверхности, называется суточным параллаксом светила (рис. 20). Иными словами, суточный параллакс есть угол р', под которым со светила был бы виден радиус Земли в месте наблюдения.

Для светила, находящегося в момент наблюдения в зените, суточный параллакс равен нулю. Если светило М наблюдается на горизонте, то суточный параллакс его принимает максимальное значение и называется горизонтальным параллаксом р. Из соотношения между сторонами и углами треугольников ТОМ' и ТОМ (рис. 20) имеем

и Отсюда получаем sin р' = sin p sin г'. Горизонтальный параллакс у всех тел Солнечной системы – величина небольшая (у Луны в среднем р = 57', у Солнца р = 8»,79, у планет меньше 1’). Поэтому синусы углов р и р' в последней формуле можно заменить самими углами и написать p' = p sin z'.(1.40)

Вследствие суточного параллакса светило кажется нам ниже над горизонтом, чем это было бы, если бы наблюдение проводилось из центра Земли; при этом влияние параллакса на высоту светила пропорционально синусу зенитного расстояния, а максимальное его значение равно горизонтальному параллаксу p. Так как Земля имеет форму сфероида, то во избежание разногласий в определении горизонтальных параллаксов необходимо вычислять их значения для определенного радиуса Земли. За такой радиус принят экваториальный радиус Земли R0 = 6378 км, а горизонтальные параллаксы, вычисленные для него, называются горизонтальными экваториальными параллаксами р0 . Именно эти параллаксы тел Солнечной системы приводятся во всех справочных пособиях.

§ 32. Вычисление моментов времени и азимутов восхода и захода светил

Часовой угол светила определяется из первой формулы (1.37), а именно:
(1.41)
Если какая-нибудь точка небесного свода восходит или заходит, то она находится на горизонте и, следовательно, ее видимое зенитное расстояние z'90 = 90°. Ее

истинное зенитное расстояние z в этот момент вследствие рефракции (см. § 30) будет больше видимого на величину r = 35'. Суточный параллакс понижает светило

над горизонтом (см. § 31), т. е. увеличивает видимое зенитное расстояние z' на величину горизонтального параллакса р. Следовательно, истинное зенитное расстояние точки в момент ее восхода или захода z = z' + r90 – p = 90° + r90 – р. Кроме того, для Солнца и Луны, имеющих заметные размеры, координаты относятся к центру их видимого диска, а восходом (или заходом) этих светил считается момент появления (пли исчезновения) на горизонте верхней точки края диска. Следовательно, истинное зенитное расстояние центра диска этих светил в момент восхода или захода будет больше зенитного расстояния верхней точки края диска на величину видимого углового радиуса R диска. (У Солнца и Луны их видимые угловые радиусы приблизительно одинаковы и в среднем равны 16’.) Таким образом, при вычислении часового угла светила в момент его восхода и захода в формуле (1.41), в самом общем случае, z = 90° + r90 – p + R, и она напишется тогда в следующем виде:

(1.42)

По формуле (1.42) часовые углы восхода и захода вычисляются только для Луны. В

этом случае RR = 16’, рR = 57’ и r90 = 35'. и формула (1.42) принимает вид При вычислении часовых углов восхода и захода Солнца его горизонтальным параллаксом можно пренебречь, и при R ¤ = 16' и r90 = 35' формула (1.42) принимает вид
(1.43)
Для звезд и планет можно пренебречь также и их видимыми радиусами и вычислять часовые углы восхода и захода по формуле Наконец, если пренебречь и рефракцией, то часовой угол восхода и захода вычисляется по формуле cos t = – tg j tg d .(1.44)

Каждое из приведенных уравнений дает два значения часового угла: t1 = t и t2 = – t. Положительное значение соответствует заходу, отрицательное – восходу светила. Местное звездное время восхода и захода, согласно формуле (1.15), получается таким: sвосх = a – t.

sзах = a + t. Затем можно вычислить моменты восхода и захода светила по местному среднему солнечному времени (см. § 23) и по декретному времени (см. § 24). Если вычисляется восход и заход Солнца, то нет необходимости вычислять звездное время явлений, так как, увеличив часовые углы t1 и t2 на 12h, мы сразу получаем моменты по местному истинному солнечному времени Т¤ = t¤ + 12h. Тогда местное среднее время

Tвосх = 12h – t¤ + h,

Тзах = 12h + t¤ + h, где h – уравнение времени (см. § 22), которое берется, так же как a и d Солнца, из Астрономического Ежегодника. Азимуты точек восхода и захода светил (без учета рефракции, параллакса и углового радиуса) получим, если в первой формуле (1.36) положим z = 90°; тогда cos z = 0, sin z =1 и
(1.45)
По формуле (1.45) получаем два значения азимута: А1 = A и A2 = 360° – A. Первое значение является азимутом точки захода, второе – азимутом точки восхода светила. Представим теперь формулы (1.45) и (1.44) в виде

и (1.46)

Так как косинус не может быть больше 1, то из этих формул следует, что восход и заход светила возможны только при условии | d |

l max (см: § 108), получается, что в видимой области спектра собственным излучением Луны можно пренебречь; Луна здесь светит только отраженным светом. С увеличением длины волны интенсивность отраженного света уменьшается (поскольку его спектр приблизительно повторяет солнечный), а интенсивность собственного излучения Луны увеличивается. В окне прозрачности земной атмосферы, расположенном в области от 8 до 14 мк, отраженное излучение ничтожно мало по сравнению с собственным, а в радиодиапазоне – тем более. При излучении энергия уходит не с самой поверхности, а с некоторой глубины, которая зависит от длины волны и электропроводности материала. Чем больше длина волны, тем в среднем больше глубина излучающего слоя. Инфракрасное излучение уходит с глубины порядка 0,1 мм, и его интенсивность определяется практически температурой поверхности. А вот радиоволны с длиной 10 см выходят с глубины порядка 1 м. Измерения инфракрасного излучения Луны и ее радиоизлучения показали следующее: 1) В дневное время температура поверхности Луны составляет в полдень на экваторе около 390°К. 2) В ночное время температура поверхности очень низка, = 100-120° К. 3) Теплопроводность, определяющая величину F, очень мала; она близка к теплопроводности сухого песка в вакууме. Колебания температуры от дня к ночи почти полностью сглаживаются уже на глубине 10 см. Итак, астрономические наблюдения указывали на пористый характер лунного поверхностного материала. Это подтвердили исследования лунного грунта, проводившиеся сначала на Луне первыми космическими аппаратами, совершившими мягкую посадку. Наиболее же детальные данные о лунном грунте были получены после доставки его образцов на Землю. Эта доставка была осуществлена экипажами американских космических кораблей «Аполлон» и советскими автоматическими станциями «Луна-16», «Луна-20» и «Луна-24». Что же представляет собой доставленный на Землю лунный грунт? Его средняя плотность 1-1,5 гЧ см –3, пористость около 50%. Можно выделить четыре типа пород, слагающих лунную поверхность: мелкозернистые пористые изверженные породы (тип А), крупнозернистые пористые изверженные породы (тип В), брекчии (обломки изверженных пород и минералов, многие из них были расплавлены в результате метеоритной бомбардировки) и реголит (мелкие частицы, пыль). Первые три группы одинаковы по химическому составу; реголит содержит примесь метеоритного вещества. Химический состав лунных пород похож на состав земных, но имеются заметные отличия: избыток тяжелых элементов, таких как Сг, Ti , Zr, и недостаток легких – Sn, К, Na. Возраст лунных изверженных горных пород очень велик, их кристаллизация происходила три-четыре миллиарда лет назад. Некоторые лунные породы кристаллизовались раньше древнейших земных. Характер лунных брекчий и реголита (наличие оплавленных частичек и обломков) свидетельствует о непрерывной метеоритной бомбардировке, но скорость разрушения ею поверхности невелика, около 10-7 см/год. Космические аппараты, оставшиеся на Луне, простоят миллионы лет. В течение многих месяцев путешествовал по Луне советский «Луноход-1», доставленный станцией «Луна-17» в ноябре 1970 г. Передавалось большое количество панорамных снимков (рис. 161), изучался состав лунного грунта вдоль трассы, проводился ряд других исследований. Это была весьма совершенная передвижная лаборатория. В январе 1973 г. станцией «Луна-21» на Луну был доставлен «Луноход-2» с аналогичной программой. Применение исключительно автоматических средств для исследования Луны отличает советскую программу исследования Луны от американской, ориентированной на полеты космонавтов. Автоматические станции имеют много преимуществ – они дешевле, легче обитаемых, позволяют проводить более длительные исследования. Сейсмографы, доставленные на Луну, отметили много небольших «лунотрясений», в основном связанных, вероятно, с падениями метеоритов. Их данные не указывают на сколько-нибудь серьезную сейсмическую активность, но Луна, без сомнения, не является геологически мертвой планетой. Это доказывают наземные наблюдения – на Луне отмечались яркие вспышки, связанные, видимо, с извержениями вулканов, и был даже сфотографирован спектр газового облака, выброшенного в районе центральной горки кратера Альфонс (см. рис. 157).

Тем не менее у Луны почти наверное нет жидкого ядра. Об этом говорит отсутствие магнитного поля (у Земли оно поддерживается токами в жидком ядре). Еще в 1959 г. магнитометр, установленный на советской космической ракете, показал, что магнитное поле Луны не превышает одной десятитысячной доли земного. Большие споры вызывает вопрос о природе типичных лунных образований – кратеров, морей, гор и т.д. Кажется естественным предположить, по аналогии с Землей, что лунные образования имеют вулканическое происхождение. В пользу этого говорят и некоторые наблюдательные факты. Например, гладкие моря очень напоминают большие лавовые поля. В некоторых местах видно, как лава заливала и обтекала другие образования. Истечение лавы, образовавшее море, произошло сравнительно поздно, и это объясняет, почему на них мало кратеров: старые были залиты, а новые не успели образоваться. Однако среди лунных образований есть много таких форм, которые на Земле встречаются крайне редко. Это цирки, кратеры, лунки, светлые лучи. Форма кратеров наводит на мысль, что они могут иметь совсем другое происхождение. Представим себе, что в лунную поверхность ударил большой метеорит. При этом происходит взрыв, образуется круглая воронка, выброшенное вещество может сформировать вал, а разлет более легких остатков – систему лучей. Все эти явления наблюдаются при сильных взрывах на Земле. Более тонкое рассмотрение показывает, что таким способом можно объяснить и наличие центральной горки. Правило Шретера тоже очень естественно объясняется гипотезой взрыва. На Земле известно несколько больших метеоритных кратеров, сохранившихся более или менее хорошо (крупнейший из них – Аризонский кратер) и, кроме того, в последнее время было найдено большое количество разрушенных кольцевых образований, которые представляют собой, по-видимому, остатки древних метеоритных кратеров. Создается впечатление, что Земля и Луна в далеком прошлом подвергались более сильной метеоритной бомбардировке, чем сейчас, и тогда возникло значительное количество цирков и кратеров. На Земле они были стерты в результате выветривания, а Луна сохранила следы этой катастрофической эпохи. Большое число кратеров сохранилось и на Марсе (см. § 136). Вероятно, часть кратеров имеет метеоритное происхождение, а часть – вулканическое. В некоторых случаях играло роль одновременное действие обоих эффектов, так как падение метеорита может нарушить прочность лунной коры и привести к образованию вулкана, к прорыву лавы, истечению газов и т.д. Таким образом, одни образования могут иметь чисто вулканическое происхождение, другие

– чисто метеоритное, третьи – комбинированное. Несколько слов о лунной атмосфере. В последние десятилетия были поставлены очень тонкие исследования с целью обнаружить следы хотя бы очень разреженной атмосферы (не отдельных выбросов газа, которые, как указывалось выше, наблюдались, а постоянной атмосферы). Использовалось несколько независимых методов. Один из них – оптические наблюдения яркости и поляризации вблизи лунных рогов. Если атмосфера существует, рога должны чуть-чуть заходить на неосвещенную сторону Луны. При рэлеевском рассеянии излучение поляризуется, и поляризация достигает 100% при угле фазы 90° (она равна нулю при фазовом угле 0° и 180°). Поэтому наличие атмосферы привело бы к слабому поляризованному свечению на концах рогов при углах фаз, близких к 90°. Это свечение искали очень тщательно, однако обнаружить его не удалось. Отсюда был сделан вывод, что лунная атмосфера, если она существует, по плотности по крайней мере в 109 раз уступает земной. У



земной поверхности концентрация молекул в атмосфере равна 2,7 ґ 1019 см –3. Следовательно, верхний предел концентрации молекул в лунной атмосфере составляет около 1010 см –3. Такая концентрация имеет место в земной атмосфере на высоте около 200 км. Прямые измерения концентрации атомов в лунной атмосфере были проведены с помощью приборов, оставленных на Луне американскими космонавтами. Оказалось, что в дневное время лунная атмосфера содержит около 106 атомов водорода и 6Ч104 атомов неона. Ночью концентрация на порядок меньше. Таким образом, лунная атмосфера крайне разрежена, состав ее резко отличается от

земной (а также, например, марсианской, см. § 136) и плотность сильно меняется в течение суток. Возникает вопрос, почему это так? Ведь на Луне, по крайней мере в прошлом, должны были действовать вулканические процессы. Недавно были получены доказательства, что они действуют и сейчас. При вулканических процессах на поверхность выбрасываются газы, такие как СО2 , Н2О, NН3 . Вся земная атмосфера, как теперь считают, имеет вулканическое происхождение. Куда же деваются газовые продукты вулканической деятельности на Луне? Многие из них удаляются в результате диссипации, из-за малой параболической скорости. Такие газы, как кислород и азот, покидают Луну очень быстро. Тяжелый углекислый газ тоже не мог бы удержаться, так как он диссоциируется солнечным ультрафиолетовым излучением. Однако при радиоактивных процессах в лунной коре должны образовываться тяжелые инертные газы Аr, Кr, Хе, диссипация которых и на Луне протекает медленно. Их удаляет с Луны другой физический процесс, а именно – взаимодействие корпускулярных потоков с лунной атмосферой. Магнитное поле и кинетическая энергия, которые несут эти потоки, вполне достаточны для «сдувания» инертных газов, выделяющихся из коры. С другой стороны, некоторая доля водорода, гелия и неона, содержащихся в корпускулярных потоках, захватывается Луной и образует ту очень разреженную атмосферу, которая была обнаружена.

§ 133. Фазы планет. Условия наблюдений

Прежде чем перейти к изучению других планет Солнечной системы, необходимо сделать несколько общих замечаний относительно условий их видимости. Угол фазы Меркурия и Венеры изменяется в пределах от 0 до 180°. Поэтому Меркурий и Венера проходят те же стадии смены фаз, что и Луна. В верхнем соединении (Солнце между планетой и Землей) диск освещен полностью, угол фазы равен нулю; в нижнем соединении к нам обращена неосвещенная сторона планеты. Иногда (это бывает очень редко), эклиптическая широта Солнца и планеты различается настолько мало, что планета проходит перед диском Солнца или за ним. Вблизи нижнего соединения Меркурий и Венера выглядят как узкие серпы. При угле фазы y2 = 90° освещена ровно половина диска (квадратура).

На рис. 162 видно, что угол фазы не может достигнуть 180°, если орбита планеты расположена вне орбиты Земли (верхние планеты). В противостоянии угол фазы для этих планет приблизительно равен нулю, и диск освещен полностью. По мере удаления от противостояния угол фазы увеличивается, достигает некоторого максимального значения ym и затем снова становится равным нулю в соединении. Чем дальше планета от Солнца, тем меньше максимальный фазовый угол ym. У Марса максимальный фазовый угол составляет 47°, у Юпитера 12°, у Сатурна 6°, у Урана 3°, Нептуна 2° и у Плутона 2°. Видимые угловые размеры Марса, Венеры и Меркурия сильно зависят от взаимного положения этих планет и Земли. Венера и Меркурий ближе всего к Земле во время нижнего соединения, и при этом угловой диаметр их максимален. Однако в нижнем соединении мы видим неосвещенную сторону диска. Кроме того, в нижнем и верхнем соединении угловое расстояние от планеты до Солнца (элонгация) очень мало, что сильно затрудняет наблюдения. Венеру и Меркурий предпочитают наблюдать вблизи наибольшей элонгации. У Меркурия наибольшая элонгация достигает 28°, и даже в этом положении его можно наблюдать только в сумерках или днем. Венера в максимальной элонгации (48°) восходит примерно за три-четыре часа до восхода Солнца (или при вечерней видимости заходит через три-четыре часа после захода Солнца). В дневное время Венеру и Меркурий можно видеть в телескоп, если они не очень близки к Солнцу. Угловые размеры Марса максимальны вблизи противостояния. Так как противостояние совпадает с нулевой фазой (диск освещен полностью), то оно является самым удобным для наблюдений положения планеты. В противостоянии можно различить на диске детали наименьших размеров. Так как орбита Марса имеет большой эксцентриситет, то расстояние от Марса до Земли не одинаково в различных противостояниях: оно минимально, когда противостояние совпадает с прохождением планеты через перигелий (около 55 млн. км) и максимально при прохождении через афелий (около 100 млн. км). Орбиты остальных верхних планет намного больше земной, поэтому расстояние до Земли при их удалении от противостояния меняется гораздо в меньшей степени, чем у Марса. Фаза изменяется тоже в небольших пределах, поэтому условия наблюдения этих планет даже вдали от противостояния часто остаются благоприятными.

§ 134. Меркурий

Ближайшая к Солнцу планета Меркурий по размерам лишь немного больше Луны: его радиус равен 2439 км. Однако средняя плотность его (5,45 г/см3) заметно больше, чем у Луны, она почти такая же, как у Земли. Ускорение силы тяжести на поверхности 372 см/сек2, в 2,6 раза меньше земного. Период обращения вокруг Солнца составляет около 88 земных суток. Из-за малых угловых размеров (около 7» в наибольшей элонгации) и близости к Солнцу Меркурий (рис. 163) наблюдать трудно, и данных об этой планете получено немного. Радиолокация Меркурия позволила определить направление и период вращения планеты. В этих экспериментах Меркурий облучался длительными, почти монохроматическими импульсами радиоволн длиной 70 см с помощью гигантской антенны диаметром 300 м (Пуэрто-Рико, радиоастрономическая обсерватория Аресибо; см. рис. 103). Отраженный импульс вследствие эффекта Доплера размывается по частоте, если планета вращается. Видимое с Земли вращение складывается из действительного осевого вращения и поворота, вызванного движением по орбите. Проводя радиолокацию при различных положениях планеты на орбите, можно определить как скорость, так и направление осевого вращения. Радиолокация Меркурия на длине волны 70 см показала, что его вращение является прямым, с периодом 58,6 ±0,5 суток. Это близко к 2/3 периода обращения планеты. Ось вращения приблизительно перпендикулярна к плоскости эклиптики.
1   2   3   4   5   6   7   8   9   ...   15


База данных защищена авторским правом ©bezogr.ru 2016
обратиться к администрации

    Главная страница