Исторически, математика играла важную роль в изобразительном искусстве, в частности при изображении перспективы, подразумевающем реалистичное изображение трехмерной сцены на плоском холсте или листе бумаги



Скачать 51.18 Kb.
Дата20.11.2016
Размер51.18 Kb.
Исторически, математика играла важную роль в изобразительном искусстве, в частности при изображении перспективы, подразумевающем реалистичное изображение трехмерной сцены на плоском холсте или листе бумаги. Согласно современным взглядам, математика и изобразительное искусство очень удаленные друг от друга дисциплины, первая - аналитическая, вторая - эмоциональная. Математика не играет очевидной роли в большинстве работ современного искусства, и, фактически, многие художники редко или вообще никогда не используют даже использование перспективы. Однако есть много художников, у которых математика находится в центре внимания. Несколько значительных фигур в изобразительном искусстве проложили дорогу этим индивидуумам.

Вообще-то не существует каких-либо правил или ограничений на использование различных тем в математическом в математическом искусстве. Однако есть несколько тем, которые достаточно часто различным художниками. Среди них есть использование многогранников, тесселяций, невозможных фигур, лент Мебиуса, искаженных или необычных систем перспективы, а также фракталов.



Правильные геометрические тела - многогранники - имели особое очарование для Эшера. в некотором роде он является отцом математического искусства. Математические идеи играют центральную роль в большинстве его картин за исключением лишь ранних работ. Большинство идей, часто используемых современными математическими художниками, были использованы Эшером, и его работы часто являются источником вдохновения для современных авторов. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это - тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.



Порядок и хаос

Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором. Заметим также, что анализируя картину можно догадаться о природе источника света для всей композиции - это окно, которое отражается левой верхней части сферы. Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.



Звезды

Если бы Эшер изобразил в данной работе, лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом, нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

Одной из частых тем математического искусства является использование многогранников, которые были изучены достаточно давно. Платон (427-348 до н.е.) описал пять правильных многогранников, которые также иногда называются телами Платона. Однако открыты они были раньше Платона, и детали открытия правильных многогранников остаются загадкой. Платон соотносил эти тела: огонь - тетраэдр, воздух - октаэдр, вода - икосаэдр, земля – куб.



Огонь



Тетраэдр.



Воздух



Октаэдр



Вода



Икосаэдр



Земля



Гексаэдр (куб)



вселенная



Додекаэдр



Далее, он писал, что существует пятая комбинация, которой Бог ограничил Мир, это додекаэдр. Архимед (290/280-212/211 до н. э) описал 13 полуправильных многогранников. Так же как правильные многогранники называют Платоновыми, полуправильные многогранники называют архимедовыми. Записи Архимеда об этих многогранниках были утеряны вместе с фигурами многогранников. Они были открыты вновь лишь в эпоху Ренессанса, и описание всех 13 многогранников было впервые опубликовано в книге Иоганна Кеплера "Harmonices Mundi" в 1619 году, почти через две тысячи лет после смерти Архимеда.

Леонардо да Винчи (Leonardo da Vinci) (1452-1519) известен своими достижениями в качестве изобретателя и художника. В его записных книгах содержатся первые из известных примеров анаморфного искусства, использующего искаженные сетки перспективы. Его наклонные анаморфные изображения представляют объекты, которые должны рассматриваться под углом, чтобы они выглядели неискаженными.

Иоганн Кеплер (1580-1630) более известен своими работами в астрономии, но также имел большой интерес к многогранникам. В своей книге "Harmonices Mundi" (1619) он опубликовал примеры заполнения плоскости плитками в виде правильных и звездчатых многоугольников в дополнение к многогранникам.

Невозможные фигуры

Невозможные фигуры - эти фигура, изображенная в перспективе таким способом, чтобы выглядеть на первый взгляд обычной фигурой. Однако при более внимательном рассмотрении зритель понимает, что такая фигура не может существовать в трехмерном пространстве. Эшер изобразил невозможные фигуры на своих известных картинах "Бельведер" (1958), "Восхождение и спуск" (1960) и "Водопад" (1961). Одним из примеров невозможной фигуры служит картина современного венгерского художника Иштвана Ороса (Istvan Orosz).





Istvan Orosz "Перекрестки" (1999). Репродукция гравюры по металлу. На картине изображены мосты, которые не могут существовать в трехмерном пространстве. Например, есть отражения в воде, которые не могут быть исходными мостами.

4. Заключение

Математические изобразительное искусство процветает сегодня, и многие художники создают картины в стиле Эшера и в своем собственном стиле. Эти художники работают в различных направлениях, включая скульптуру, рисование на плоских и трехмерных поверхностях, литографию и компьютерную графику. А наиболее популярными темами математического искусства остаются многогранники и другие.



Литература

[1] M. C. Escher - His Life and Complete Graphic Work, by F.H. Bool, J.R. Kist, J.L. Locher, and F. Wierda (Harry N. Abrams, New York, 1982).

[2] The Magic Mirror of M. C. Escher, by Bruno Ernst (Ballantine Books, New York, 1976).

[3] Visions of Symmetry - Notebooks, Periodic Drawings, and Related Works of M. C. Escher, by Doris Schattschneider (W.H. Freeman and Co., New York, 1990).



[4] "Fractals and an Art for the Sake of Science," Benoit B. Madelbrot, in The Visual Mind, ed. by Michele Emmer (MIT Press, Cambridge, 1993).

http://im-possible.info/russian/art/index.html


База данных защищена авторским правом ©bezogr.ru 2016
обратиться к администрации

    Главная страница