Функционирование и формирование почв над подземными хранилищами природного газа



страница1/5
Дата06.05.2016
Размер0.91 Mb.
  1   2   3   4   5
На правах рукописи
МОЖАРОВА НАДЕЖДА ВАСИЛЬЕВНА


ФУНКЦИОНИРОВАНИЕ И ФОРМИРОВАНИЕ ПОЧВ НАД ПОДЗЕМНЫМИ ХРАНИЛИЩАМИ ПРИРОДНОГО ГАЗА
Специальность 03.00.27 – почвоведение

Специальность 03.00.16 – экология



АВТОРЕФЕРАТ
диссертации на соискание ученой степени

доктора биологических наук







Москва – 2009

Работа выполнена на кафедре географии почв факультета почвоведения Московского государственного университета имени М.В. Ломоносова.



Официальные оппоненты: доктор биологических наук,

профессорСтепанов А.Л.

доктор географических наук,

профессор Иванов И.В.

доктор биологических наук,

профессор Васенев И.И.



Ведущее учреждение: Почвенный институт им. Докучаева РАСХН

Защита состоится «___» ____________ 2009 года в 15.30 в аудитории М-2 на заседании диссертационного совета Д 501.001.57 при МГУ имени  М.В. Ломоносова на факультете почвоведения по адресу: 119991, ГСП-1, Москва, Ленинские горы, МГУ имени М.В. Ломоносова, факультет почвоведения.


С диссертацией можно ознакомиться в библиотеке факультета почвоведения МГУ.
Автореферат разослан «__»________2009 г.

Приглашаем Вас принять участие в обсуждении диссертации на заседании диссертационного совета или присылать отзывы на автореферат в двух экземплярах, заверенные печатью, по адресу: 119991, ГСП-1, Москва, Ленинские горы, МГУ имени М.В. Ломоносова, ф-т Почвоведения, Ученый совет. Факс (495) 939-24-67


Ученый секретарь

диссертационного совета

доктор биологических наук Никифорова А.С.




ВВЕДЕНИЕ

Актуальность темы. Научные достижения последнего времени в изучении биосферного газообмена неразрывно связаны с разработкой проблемы перехода биосферы в ноосферу и являются развитием основополагающих идей В.И. Вернадского. Многосторонняя индустриальная деятельность человека охватывает все природные системы Земли, в том числе и почвенный покров, вносит значительные изменения в биогеохимические циклы элементов в биосфере, ставит под угрозу ее нормальное функционирование (Ковда, 1975), определяет задачи, связанные с многообразными экологическими функциями почв – атмосферными, гидросферными, литосферными, биотическими (Добровольский, 1996, 1997, 1999; Добровольский, Никитин, 1986, 1990). Почва является регулятором биосферных взаимодействий, функционируя, она контролирует и трансформирует проходящие через нее потоки и циклы вещества и энергии. Почвенный покров выступает как своеобразная полупроницаемая мембрана, осуществляющая газообмен между атмосферой и литосферой (Розанов, 1988).

В настоящее время наиболее остро стоят проблемы увеличения метана в атмосфере, содержание которого за последние два столетия возросло почти втрое, что, по-видимому, связано с дисбалансом продуцирования, разложения и трансформации метана. Актуальными экологическими проблемами дальнейшего использования существующих разрабатываемых газовых месторождений и подземных газохранилищ является исследование биогеохимических циклов парниковых газов в биосфере, влияния последних на функционирование почвенной системы и формирование почв, функционально-экологических аспектов географии почв газоносных территорий. Наиболее остро стоят вопросы поиска новообразованных твердых, консервативных продуктов функционирования, созданных вследствие неполной замкнутости, необратимости многих почвенных процессов внутри почвенной системы (Таргульян, Соколова, 1996). Проблемы осложняются исследованием состава, свойств, географии антропогенно-преобразованных почв, разработкой их диагностики и систематики.



Цель исследования: разработать концепцию функционирования и формирования почв над подземными хранилищами природного газа на примере дерново-подзолистой и черноземной зон.

Задачи исследования:

1. Разработать концепцию функционирования почвенного покрова, включающую представления о взаимодействии техногенно-аллохтонного метана с почвами над подземными хранилищами природного газа. Выявить факторы, элементы, параметры и балансы функционирования почв.

2. Определить роль (функции) почвенного покрова в регулировании эмиссии техногенно-аллохтонного и атмосферного метана.

3. Выявить нарушения природных биогеохимических циклов метана в почвах над подземными хранилищами природного газа. Определить локальные и глобальные придержки параметров биогеохимического цикла метана.

4. Выявить пространственно-временные закономерности рассеяния, депонирования, бактериального окисления и эмиссии автохтонного, аллохтонного, техногенно-аллохтонного и атмосферного метана в почвах над подземными хранилищами природного газа.

5. Оценить массовые балансы и соотношение эмиссии и стока автохтонного и техногенно-аллохтонного метана в почвах над подземными хранилищами природного газа в сезонной и годовой динамике и различных технологических условиях.

6. Выявить основные пути и продукты деструкции метана в почвах над подземными хранилищами природного газа. Определить состав, численность и биомассу ведущих микроорганизмов, осуществляющих цепь превращений метана.

7. Выявить возможные пути формирования природно-техногенных признаков почв. Показать цепи редукции железа в почвах при воздействии аллохтонного и техногенно-аллохтонного метана.

8. Выявить влияние добычи и хранения природного газа на состав, свойства, пространственное распределение почв. Разработать диагностику антропогенно-преобразованных почв.

Основные положения, выносимые на защиту: концепция функционирования и формирования почв над подземными хранилищами природного газа в дерново-подзолистой и черноземной зонах.

1. Использование эколого-функционального подхода позволило создать представление о почвенном покрове газоносной территории как двусторонней вертикальной и горизонтальной мембране, экранирующей, дифференцирующей и трансформирующей мигрирующие потоки техногенно-аллохтонного метана, обладающей различной рефлекторностью, отвечающей на механизмы газопереноса.

2. В результате формирования искусственных газовых залежей нарушаются природные биогеохимические циклы метана в почвах. Нарушения выражаются в ритмических процессах притока, рассеяния и возникновения аномалий техногенно-аллохтонного и аллохтонного метана в почвах, эмиссии его в атмосферу; в комплексе абиотических и биотических процессов его депонирования, диффузионной проницаемости и бактериального окисления. Определены локальные и глобальные придержки биогеохимического цикла метана в почвах при подземном хранении природного газа.

3. Массовые балансы эмиссии, бактериального окисления, поглощения техногенно-аллохтонного и атмосферного метана характеризуются различной эффективностью и чрезвычайно высокой изменчивостью, обусловленной интенсивностью механизмов поступления потоков газа и структурой почвенного покрова в годовых, сезонных циклах и технологических условиях. Потоки природного газа задерживаются почвой и расходуются на бактериальное окисление (90-99%) и эмиссию метана в атмосферу (1-10%), составляя 5-10% от общих потерь газа при подземном его хранении. Эмиссия метана в весенний период не компенсируется бактериальным окислением и поглощением атмосферного метана.

4. Почвы функционируют как механизм (реактор), определяющий цепь превращений деструкции метана и синтеза других органических, органо-минеральных газообразных, жидких и твердых веществ. Трансформация метана протекает в незамкнутых циклах и процессах микробиологической деструкции, сопровождается образованием диоксида углерода, переносом его в атмосферу и формированиием почвенных новообразований высокодисперсного магнетита путем аэробной метилотрофной и анаэробной ферментирующей железоредукции.

5. Над подземными искусственными газовыми залежами в зонах рассеяния и доминирующего влияния углеводородных газов преобладают природные почвы с техногенно-педогенными признакаминовообразованиями микродисперсного бактериоморфного магнетита. В результате механического нарушения и отложения буровых шламов, химического загрязнения сформированы новые техногенные слои, горизонты, специфические антропогенно-преобразованные почвы и почвоподобные образования, получившие незначительное распространение. Рассмотрены представления о диагностике почв и почвоподобных тел газоносных территорий.



Научная новизна. Впервые сформирована концепция функционирования почв над подземными хранилищами природного газа, расположенными в различных природно-географических зонах. Определены факторы, элементы, параметры, география и балансы функционирования почв над искусственными и естественными газовыми залежами.

Сформировано представление о почвенном покрове газоносных территорий как специфической двусторонней горизонтальной и вертикальной мембране, регулирующей мигрирующие атмотропические потоки техногенно-аллохтонного метана из недр и геотропические из атмосферы с помощью системы почвенно-геохимических барьеров.

Определены экранирующая, дифференцирующая, трансформирующая и различная рефлекторная функции почвенного покрова. Сформировано представление о почвенном покрове как реакторе, определяющем цепь превращений деструкции метана и синтеза других веществ.

Установлены нарушения биогеохимического цикла метана в почвах при участии человека. Определены локальные и глобальные придержки биогеохимического цикла метана.

Установлен факт, определены механизмы формирования новообразований техногенно-педогенного магнетита при участии микроорганизмов, высокой вариабельности окислительно-восстановительного потенциала и повышенном содержании органического вещества в почвах различных природных зон.

Установлено формирование специфических антропогено-преобразованных почв. Разработаны принципы их диагностики.



Практическое значение работы. Проведенные полевые исследования, полученные экспериментальные материалы, методические разработки и теоретические обобщения позволили сформировать основные положения инновационной системы почвенно-экологического мониторинга герметичности объектов подземного хранения природного газа, вошедшие в руководящие документы. Нововведения в области мониторинга герметичности подземных газохранилищ позволят выявить источники, пути диффузионно-конвективного переноса, ореолы рассеяния, бактериального окисления, эмиссии в атмосферу неучтенного природного газа и модифицированных газов, твердые геохимические признаки трансформации почв под влиянием флюидов. Результаты исследований по мониторингу и его элементам активно используются при проведении работ по заказу ОАО Газпром, по договорам с организациями ВНИИГАЗ, ГИ, ИПНиГ РАН, АНО НИИЦ «Геориск», НПО «Экостройгеология».

Материалы исследований по изучению функционирования почв и роли почвенного покрова на газоносных территориях поддерживались инициативными грантами РФФИ, вошли в отчеты НИР факультетата почвоведения МГУ, грантов РФФИ, «Университетов России», «Ведущих научных школ», ФЦП «Интеграция», ФГУ НИМИ «Базис».



Полученные материалы широко используются в образовательном процессе на факультете почвоведения МГУ. Автором составлена программа и подготовлен лекционный курс «Антропогенные почвы». На основе выполненных исследований автором подготовлено учебное пособие с одноименным названием, куда включены разделы по функционированию почвенного покрова на газоносных территориях и подходам к диагностике антропогенно-преобразованных почв.

Вклад автора в разработку проблемы. Автором определена программа работ, ему принадлежит постановка цели и задач исследования. Полевые экспедиции проводились под руководством и при непосредственном участии автора. Большая часть экспериментального материала получена автором или под его руководством в коллективных экспедиционных и лабораторных исследованиях кафедры географии почв факультета почвоведения МГУ. Другая часть экспериментального материала получена в договорных работах с ГИНом, ИПНиГ РАН, ВНИИГАЗом. Обобщение и интерпретация полученных результатов проведены лично автором. Подавляющее большинство публикаций, обобщающих результаты исследований, подготовлено и написано лично автором, в том числе монографические издания МГУ, крупные работы в периодических изданиях, учебные пособия.

Апробация работы и публикации. Основные положения и результаты исследований были представлены, доложены и обсуждены на более чем 20 научных совещаниях, симпозиумах, конференциях отечественного и международного уровня, среди которых – Всероссийские съезды почвоведов (Суздаль, 2000; Новосибирск, 2004; Ростов-на-Дону, 2008), Ломоносовские чтения МГУ (2003), международные конференции (в Словакии «Антропогенные почвы», 2003 и Китае «Почвы урбанизированных, промышленных, техногенных и военных территорий», 2007, конференция «Эмиссия и сток парниковых газов на территории северной Евразии», «Экология и почвы» (Пущино, 2003, 2006), конференции по классификации почв (Петрозаводск, 2003), по загрязнению почв (2004, 2006), инновационные и научно-практические конференции (2004, 2008.). По теме диссертации опубликовано более 52 работ, включая коллективные монографии, учебные пособия, руководящие документы, научные статьи в отечественных и зарубежных изданиях, научные статьи в материалах конференций, инновационные и научно-практические публикации.

Объем и структура работы. Диссертация состоит из введения, 8 глав и выводов, она изложена на 312 страницах, содержит 70 рисунков и 10 таблиц. Список литературы содержит 250 работ, из них 31 на иностранном языке.

Благодарности. Глубокую благодарность автор приносит своему наставнику и учителю академику РАН профессору Г.В. Добровольскому и заведующему кафедрой географии почв члену-корреспонденту РАН профессору С.А. Шобе за постоянную поддержку и ценные советы. Автор благодарит своих учителей и коллег В.О. Таргульяна, М.Н. Строганову, И.С. Урусевскую, А.В. Иванова, А.А. Боброва за неизменную помощь и профессиональную поддержку, а также весь коллектив кафедры географии почв за доброжелательное отношение и ценные замечания. Автор глубоко признателен своим ученикам и соавторам С.А. Кулачковой, В.В. Прониной, С.Н. Ушакову, Н.И. Беляевой, А.М. Загурскому, О.В. Лисовицкой, Т.В. Гольцовой за товарищескую поддержку в экспедиционных условиях, помощи в лабораторных экспериментах. Автор выражает глубокую благодарность сотрудникам кафедры физики и мелиорации почв А.В. Смагину, агрохимии – Верховцевой Н.В., биологии почв – М.М. Умарову, А.Л. Степанову, Г.М. Зеновой, Т.Г. Добровольской, Н.А. Манучаровой за обсуждение отдельных вопросов диссертации.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Глава 1. Метан в биосфере

В работе сделан обзор литературы по названной теме. Отдельные подглавы посвящены проблемам: происхождения и образования метана, механизмам передвижения, бактериальному окислению метана и других углеводородов, циклу метана в почвах, литосфере, морях и океанах, эмиссии в атмосферу, окислению в атмосфере, источникам и стокам метана, биогеохимической деятельности микроорганизмов в биосфере, влиянию газовой залежи на почвы.

Метан – широко распространенный газ Земли. В свободном виде метан отмечается в тектонически-активных зонах планеты. Весьма значительные скопления метана сосредоточены в газоносных, нефтеносных и угольных месторождениях (рис. 1). Для геологического метана характерно доминирование тяжелых изотопов углерода. В составе природного газа присутствуют тяжелые углеводороды (Алексеев и др., 1978). Биогенное образование метана охватывает биосферу, проходит в морях, океанах, почвах (рис. 1). Для биогенно образованного природного газа характерно преобладание легкого изотопного состава, весьма низкое присутствие легких гомологов и отсутствие тяжелых углеводородов.

Широко изучены микроорганизмы цикла метана: анаэробные метанобразующие (Беляев, 1976, 1988; Заварзин, 1972; Заварзин, Васильева, 1999 и др.) и аэробные метанокисляющие бактерии (Малашенко и др., 1978; Кондратьева, 1983; Гальченко, 1986, 2001; Hanson, Hanson, 1996; Заварзин, 1997, 2004; Дедыш, 2002; Паников, 1998; Panikov et al., 2001; Колесников и др., 2004; Adamsen, King, 1993; и др.), их морфология, физиология, условия роста, распространение; эмиссия в прилегающие геосферы (атмосферу и литосферу); поглощение газов из атмосферы (Минько, 1988; Смагин, 1999).

Большинство известных работ посвящены циклу метана, его автохтонному образованию, окислению и эмиссии в атмосферу в естественных и антропогенных ландшафтах (Заварзин, Кларк, 1987; Заварзин, 1995, 1997, 1999; Слободкин и др., 1992; Паников и др., 1992, Паников, 1995; Степанов, 2000; Cicerone, Oremland, 1988; Hanson, Hanson, 1996; Le Mer, Roger, 2001; Chan, Parkin, 2001 и др.). В педосфере и самых верхних слоях литосферы происходит интенсивное окисление метана с помощью метанотрофов, относящихся к родам: Methylomonas, Methylobacter, Methylococcus, Methylosinus, Methylocystis (Могилевский и др., 1971, Гальченко, 2001). Окисление метана в недрах не происходит из-за отсутствия специфических микроорганизмов. Отмечается экранирующая и регулирующая роль углеводородокисляющего биоценоза в формировании современной безуглеводородной атмосферы Земли (Оборин и др., 2005). Анаэробные метанобразующие и аэробные метанокисляющие микроорганизмы не могут развиваться совместно, но объединены в цикл транспортным процессом, который реализуется вследствие переноса метана из анаэробной в аэробную зону (цикл Зенгена, цит. по Заварзину, 1999). Транспорт метана осуществляется с помощью механизмов молекулярной диффузии и конвекции, метан передвигается из анаэробной в аэробную зону в почвах и по системе вертикальной и горизонтальной трещиноватости геологических структур (Оборин и др., 2005).

В
настоящее время концентрация метана в атмосфере ежегодно растет, достигнув 1,72 ppm. (Cicerone, Oremland, 1988; Nakayama, 1995; Conrad, 1996; Hanson, Hanson, 1996; Смагин, 1999). Высокие темпы роста эмиссии метана являются результатом в первую очередь человеческой активности, связанной с сельскохозяйственной и промышленной деятельностью (Hanson, Hanson, 1996; Минько 1988), Хейн с соавторами (по Паникову, 1998). Представления об основных источниках и стоках атмосферного метана, обобщенные в цитируемых работах, отражены на рис. 1.

С
Рис. 1. Биогеохимический цикл метана и нарушение его человеком. Продукты трансформации метана.
редний поток биогенного метана (основанного на результатах мониторинга на поверхности Земли) в атмосферу в России, рассчитанный на основе прямых измерений и экстраполированных данных зарубежных ученых, составляет 24 Тг/год (Zelenev, 1996), мира –550 Тг/год (Cicerone, Oremland, 1988), 530 Тг/год (Смагин, 2000). В приведенных подсчетах отсутствуют данные об эмиссии биогенного метана из залежей природного газа, образованных биогенным путем. Имеются другие глобальные оценки, учитывающие потоки из недр. Доля биогенных источников метана составляет 50-60%, литосферных и техносферных по 20-25% (Пиковский, 1993). Доля только геогенных потоков метана характеризуется широким размахом от 200 до 900 млн. т/год (Войтов, 1986; Адушкин и др. 2003). Недооценка эмиссии геологического метана также отмечается в работах (Etiope and Klusman, 2002; Mörner and Etiope, 2002). Усредненные нами данные эмиссии метана из различных источников, в том числе и геогенных, составили около 1100 Тг (рис. 1).

.


Веду-щие процесс-сы образо-ва-

ния, превра-щения



Источники образования, интенсивность

продуцирования метана,

эмиссия метана из

пограничных геосфер

(Тг/год)


Стоки метана

(в атмосфере, почве),

Тг/год


Геохимическая

деятельность,

накопление

газов, аномалии



Тропо-педо-лито-биосфера






Фото-хими-ческие

47% ∑51%

∑1100


470


СН4

30-625 Тг/год

Природ-ные

Антропогенные

Микро-

биологические



переувлажнен-ные

почвы–115;



тер-митники–30.
Геоген-ные

потоки (недры)



рисовые

почвы - 85



отходы - 135;

фермен-

тация - 80;



промыш-ленность-95

*Тундровые почвы –

0,270 мг/м 2 сут.;

Подзолистые-

0,3-1,6 мг/м 2 сут.

серые лесные

-2,0 мг/м 2 сут.

красно-бурые

- 1,2 мг/м 2 сут.

30-69




СО2-0,5Тг

СН4

Газовые бактериаль-ные,

тепловые, геофизические, литогеохими-ческие,



Eh

Микро-

биоло-ги-ческие



300

автоморфные почвы мг С/м 2 ч **

(h 10см) -0,0001; пере-увлаж-ненные почвы - 0–0,33

Газовые


залежи

300

0,04(0,02)

Искусствен-ные газовые залежи- от потерь-0,1%

подземные воды ***

метры у.е.

0,02 –-48-55

(меньше в 2-20раз)

500 – 39-23(«)

1000 – 5–35(«)


Скрытый сток

1-6, от потерь5-10%

Автоморфные почвы**) мг С/м 2 ч (10см) –0,1-0,4 (1,5-2)

переувлажненные почвы-0,1-0,8 (0,5-1,5)

подземные воды (пласты)***

метры у.е.

0,02–480(43)

500–160(14)

1000–50-25-(4-2)




В почвах-

3O4

минералы

В породах Fе3O4 и
FеS2,., С, N, Моря -арагонитовые постройки

океаны–метанобиос



Термо-каталит.

Нефтяные газовые залежи


И нтенсивность бактериального окисления метана *Камерный метод, **ненарушенные образцы,***числен-ность метанобразующих и углеводородокисля-ющих родококков, окисляющих алифатические углеводороды (С9-16 )

Трещиноватость геологических структур




–– газовая аномалия автохтонного и природно-аллохтонного метана

–техногенная газовая аномалия техногенно-аллохтонного метана

Информация, выделенная жирным шрифтом, является результатом проведенных нами исследований.

Имеются три основных пути стока метана из атмосферы Земли. Главная роль, по мнению большинства исследователей, принадлежит фотохимическо-му окислению метана гидроксил-радикалами, озоном и окисью углерода в тропосфере (рис. 1).

Биогенное окисление метана в почвах метанокисляющими бактериями относительно невелико, варьирует по различным даннымот 6 до 10% от общего стока (Смагин, 1999). Поглощение метана почвами может составлять 30-69 Тг. Интенсивность потребления метана почвами, измеренная и обобщенная в работах King, (1992); Boeckx, Van Cleemput, (2001) Strieg et al. (1992), приведена на рис. 1. Дисбаланс эмиссии и стока метана, т.е. накопление метана в атмосфере с учетом геогенных потоков, по литературным данным может варьировать от 30 до 625 Тг. Но эти величины характеризуют нетто-сток в почвах без учета потенциального окисления в поверхностных слоях гидроморфных ландшафтов, в результате чего часть метана, производимая в них, не выходит в атмосферу (Смагин, 1999). Активность “метановых биофильтров”, так называемый скрытый сток, более чем на 90 % снижает эмиссию метана (Дедыш, Паников, 1997).

Планетарная газовая функция почвенного покрова заключается в его участии в биосферном круговороте газов, включающем: поглощение глубинных газов из нижележащих слоев литосферы; образование газообразных веществ; эмиссию в атмосферу. В наименьшей степени в настоящее время исследуется поглощение почвами глубинного аллохтонного метана, ограничивающее эмиссию в атмосферу на газоносных территориях. Изучение этого вопроса было начато в 30-х годах XX в., когда у земной поверхности обнаружили метан и другие газообразные углеводороды, мигрировавшие из газонефтяных залежей, которые были признаны факторами почвообразования (Ковда, 1953; Могилевский и др., 1970; Бачурин и др., 1979). Установлены ландшафтно-геохимические закономерности распространения углеводородных газов и окисляющих их бактерий в черноземных почвах (Иванов, 1969). Отмечена большая амплитуда колебаний ОВП над нефтяными залежами (Сердобольский, 1953; Ковда, Славин, 1959). Было показано формирование газовых, битумных и бактериальных аномалий в водоносных горизонтах, породах и иллювиально-гипсовых горизонтах черноземов (Иванов, 1969). В результате функционирования биологического фильтра в почвах накапливаются различные продукты бактериальной жизнедеятельности (Могилевский, 1979). Было замечено увеличение содержания органического вещества и азота в почвах, подверженных влиянию углеводородов в местах разрыва трубопроводов и над нефтяным месторождением (Harper, 1939; Кононова, 1953, Davis, 1952).

Вместе с тем в морях и океанах, осадочных толщах остаются твердые продукты геохимической деятельности метана (рис. 1). Вопросы формирования следов геохимической деятельности метана в почвах в литературе не рассматривались. Однако формирование органического вещества, образование органо-минеральных комплексов при понижении окислительно-восстановительного потенциала в почвах при воздействии метана создает предпосылки для поиска новых знаний по редукции поливалентных металлов. В этой связи в работе сделан обзор литературы по генезису магнитных оксидов железа, в том числе по биологически контролируемой и индуцируемой минерализации.


  1   2   3   4   5


База данных защищена авторским правом ©bezogr.ru 2016
обратиться к администрации

    Главная страница